Effect of plant systemic resistance elicited by biological and chemical inducers on the colonization of the lettuce and basil leaf apoplast by Salmonella enterica

Author(s):  
L. Chalupowicz ◽  
S. Manulis-Sasson ◽  
I. Barash ◽  
Y. Elad ◽  
D. Rav-David ◽  
...  

Mitigation strategies to prevent microbial contamination of crops are lacking. We tested the hypothesis that induction of plant systemic resistance by biological (ISR) and chemical (SAR) elicitors reduces endophytic colonization of leaves by Salmonella enterica serovars Senftenberg and Typhimurium. S . Senftenberg had greater endophytic fitness than S . Typhimurium in basil and lettuce. The apoplastic population sizes of serovars Senftenberg and Typhimurium in basil and lettuce, respectively, were significantly reduced approximately 10- to 100-fold by root treatment with microbial inducers of systemic resistance compared with the H 2 O treatment. Rhodotorula glutinis effected the lowest population increase of S . Typhimurium in lettuce (120-fold) and S . Senftenberg in basil leaves (60-fold) compared with the H 2 O treatment over 10 days post-inoculation. Trichoderma harzianum and Pichia guilliermondii did not have any significant effect on S . Senftenberg in the basil apoplast. The chemical elicitors acidobenzolar-S-methyl and DL-β-amino-butyric acid inhibited S . Typhimurium multiplication in the lettuce apoplast 10- and 2-fold, respectively, compared with H 2 O-treated plants. All ISR and SAR inducers applied to lettuce roots in this study increased leaf expression of the defense gene PR1 , as did Salmonella apoplastic colonization in H 2 O-treated lettuce plants. Remarkably, both acidobenzolar-S-methyl- and R. glutinis -upregulation of PR1 was repressed by the presence of Salmonella in the leaves. However, enhanced PR1 expression was sustained longer and at greater levels upon elicitor treatment than by Salmonella induction alone. These results serve as proof of concept that priming of plant immunity may provide an intrinsic hurdle against the endophytic establishment of enteric pathogens in leafy vegetables. Importance Fruit and vegetables consumed raw have become an important vehicle of foodborne illness despite a continuous effort to improve their microbial safety. Salmonella enterica has caused numerous recalls and outbreaks of infection associated with contaminated leafy vegetables. Evidence is increasing that enteric pathogens can reach the leaf apoplast where they confront plant innate immunity. Plants may be triggered for induction of their defense signaling pathways by exposure to chemical or microbial elicitors. This priming for recognition of microbes by plant defense pathways has been used to inhibit plant pathogens and limit disease. Given that current mitigation strategies are insufficient in preventing microbial contamination of produce and associated outbreaks, we investigated the effect of plant induced resistance on S. enterica colonization of the lettuce and basil leaf apoplast in order to gain a proof of concept for the use of such an intrinsic approach to inhibit human pathogens in leafy vegetables.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoxiang Yang ◽  
Özge Sürer ◽  
Daniel Duque ◽  
David P. Morton ◽  
Bismark Singh ◽  
...  

AbstractCommunity mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France’s ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As proof-of-concept, we describe the optimization and maintenance of the staged alert system that has guided COVID-19 policy in a large US city (Austin, Texas) since May 2020. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 190-191
Author(s):  
Emma T Helm ◽  
Nicholas Gabler ◽  
Eric R Burrough

Abstract Swine dysentery (SD) induced by Brachyspira hyodysentariae (Bhyo) has recently become more prevalent in swine herds, renewing research interest regarding dietary mitigation strategies. It has been reported that insoluble dietary fiber such as DDGS influences Bhyo colonization leading to more rapid disease development. Therefore, the objective of this study was to determine if replacement of insoluble (20% DDGS) with soluble and highly fermentable [sugar beet pulp (BP) and resistant potato starch (RS)] fiber would reduce Bhyo disease expression. At total of 38 pigs (40.9 ± 5.0 kg BW) were selected, confirmed negative for Bhyo, and allocated to dietary treatment groups (13 pigs/trt): 1) Control consisting of 20% DDGS, no BP or RS (0%), 2) 10% DDGS, 5% BP and 5% RS (5%), or 3) 0% DDGS, 10% BP, 10% RS (10%). All diets were formulated to be isocaloric and isonitrogenous. Diets were fed for 14 days pre-challenge and on days post inoculation (dpi) 0, all pigs were inoculated with Bhyo. Pigs and feeders were weighed weekly for 28 dpi. Overall, ADG was greater in both 5% (0.85 kg/d) and 10% (1.18 kg/d) pigs compared with 0% pigs (0.63 kg/d; P=0.004). The 10% pigs (2.46 kg/d) had greater ADFI compared with the 0% pigs (1.84 kg/d; P=0.024), 5% pigs being intermediate (2.20 kg/d). The 10% pigs also had greater G:F compared with both the 0% and 5% pigs (P< 0.001). In terms of clinical disease presentation, 11/13 0% pigs developed clinical SD compared with 6/13 5% pigs and only 2/13 10% pigs (P=0.002). In conclusion, while not completely protective, reducing insoluble dietary fiber via replacement with soluble and fermentable BP and RS reduced clinical SD and improved pig performance during a 28-day Bhyo challenge. These data suggest such dietary manipulation may reduce usage of antibiotics in SD treatment and control.


2019 ◽  
Vol 147 ◽  
Author(s):  
A. F. A. Pires ◽  
L. Patterson ◽  
E. A. Kukielka ◽  
P. Aminabadi ◽  
N. Navarro-Gonzalez ◽  
...  

Abstract Diversified farms are operations that raise a variety of crops and/or multiple species of livestock, with the goal of utilising the products of one for the growth of the other, thus fostering a sustainable cycle. This type of farming reflects consumers' increasing demand for sustainably produced, naturally raised or pasture-raised animal products that are commonly produced on diversified farms. The specific objectives of this study were to characterise diversified small-scale farms (DSSF) in California, estimate the prevalence of Salmonella enterica and Campylobacter spp. in livestock and poultry, and evaluate the association between farm- and sample-level risk factors and the prevalence of Campylobacter spp. on DSSF in California using a multilevel logistic model. Most participating farms were organic and raised more than one animal species. Overall Salmonella prevalence was 1.19% (95% confidence interval (CI95) 0.6–2), and overall Campylobacter spp. prevalence was 10.8% (CI95 = 9–12.9). Significant risk factors associated with Campylobacter spp. were farm size (odds ratio (OR)10–50 acres: less than 10 acres = 6, CI95 = 2.11–29.8), ownership of swine (OR = 9.3, CI95 = 3.4–38.8) and season (ORSpring: Coastal summer = 3.5, CI95 = 1.1–10.9; ORWinter: Coastal summer = 3.23, CI95 = 1.4–7.4). As the number of DSSF continues to grow, evaluating risk factors and management practices that are unique to these operations will help identify risk mitigation strategies and develop outreach materials to improve the food safety of animal and vegetable products produced on DSSF.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Erick Maosa Bosire ◽  
Colleen R. Eade ◽  
Carl J. Schiltz ◽  
Amanda J. Reid ◽  
Jerry Troutman ◽  
...  

ABSTRACT Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae. c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.


2001 ◽  
Vol 356 (1411) ◽  
pp. 1027-1034 ◽  
Author(s):  
John Wain ◽  
Deborah House ◽  
Derek Pickard ◽  
Gordon Dougan ◽  
Gad Frankel

In this review we summarize recent genomic studies that shed light on the mechanism through which pathogenic Escherichia coli and Salmonella enterica have evolved. We show how acquisition of DNA at specific sites on the chromosome has contributed to increased genetic variation and virulence of these two genera of the Enterobacteriaceae.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Sabrina Diemert ◽  
Tao Yan

ABSTRACT Clinical surveillance of enteric pathogens like Salmonella is integral to track outbreaks and endemic disease trends. However, clinic-centered disease monitoring biases toward detection of severe cases and underestimates the incidence of self-limiting gastroenteritis and asymptomatic strains. Monitoring pathogen loads and diversity in municipal wastewater (MW) can provide insight into asymptomatic or subclinical infections which are not reflected in clinical cases. Subclinical infection patterns may explain the unusual observation from a year-long sampling campaign in Hawaii: Salmonella enterica serovar Derby was the most abundant pulsotype in MW but was detected infrequently in clinics over the sampling period. Using whole-genome sequencing data of Salmonella isolates from MW and public databases, we demonstrate that the Derby serovar has lower virulence potential than other clinical serovars, particularly based on its reduced profile of genes linked with immune evasion and symptom production, suggesting its potential as a subclinical salmonellosis agent. Furthermore, MW had high abundance of a rare Derby sequence type (ST), ST-72 (rather than the more common ST-40). ST-72 isolates had higher frequencies of fimbrial adherence genes than ST-40 isolates; these are key virulence factors involved in colonization and persistence of infections. However, ST-72 isolates lack the Derby-specific Salmonella pathogenicity island 23 (SPI-23), which invokes host immune responses. In combination, ST-72’s genetic features may lead to appreciable infection rates without obvious symptom production, allowing for subclinical persistence in the community. This study demonstrated wastewater’s capability to provide community infectious disease information—such as background infection rates of subclinical enteric illness—which is otherwise inaccessible through clinical approaches. IMPORTANCE Wastewater-based epidemiology (WBE) has been conventionally used to analyze community health via the detection of chemicals, such as legal and illicit drugs; however, municipal wastewater contains microbiological determinants of health and disease as well, including enteric pathogens. Here, we demonstrate that WBE can be used to examine subclinical community salmonellosis patterns. Derby was the most abundant Salmonella serovar detected in Hawaii wastewater over a year-long sampling study, with few corresponding clinical cases. Comparative genomics analyses indicate that the normally rare strain of S. Derby found in wastewater has a unique combination of genes which allow it to persist as a subclinical infection without producing symptoms of severe gastroenteritis. This study shows that WBE can be used to explore trends in community infectious disease patterns which may not be reflected in clinical monitoring, shedding light on overall enteric disease burden and rates of asymptomatic cases.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Danisa M. Bescucci ◽  
Sandra T. Clarke ◽  
Catherine L. J. Brown ◽  
Valerie F. Boras ◽  
Tony Montina ◽  
...  

Abstract Background Cathelicidins are a class of antimicrobial peptide, and the murine cathelicidin-related antimicrobial peptide (mCRAMP) has been demonstrated in vitro to impair Salmonella enterica serovar Typhimurium proliferation. However, the impact of mCRAMP on host responses and the microbiota following S. Typhimurium infection has not been determined. In this study mCRAMP−/− and mCRAMP+/+ mice (± streptomycin) were orally inoculated with S. enterica serovar Typhimurium DT104 (SA +), and impacts on the host and enteric bacterial communities were temporally evaluated. Results Higher densities of the pathogen were observed in cecal digesta and associated with mucosa in SA+/mCRAMP−/− mice that were pretreated (ST+) and not pretreated (ST−) with streptomycin at 24 h post-inoculation (hpi). Both SA+/ST+/mCRAMP−/− and SA+/ST−/mCRAMP−/− mice were more susceptible to infection exhibiting greater histopathologic changes (e.g. epithelial injury, leukocyte infiltration, goblet cell loss) at 48 hpi. Correspondingly, immune responses in SA+/ST+/mCRAMP–/− and SA+/ST−/mCRAMP–/− mice were affected (e.g. Ifnγ, Kc, Inos, Il1β, RegIIIγ). Systemic dissemination of the pathogen was characterized by metabolomics, and the liver metabolome was affected to a greater degree in SA+/ST+/mCRAMP–/− and SA+/ST−/mCRAMP–/− mice (e.g. taurine, cadaverine). Treatment-specific changes to the structure of the enteric microbiota were associated with infection and mCRAMP deficiency, with a higher abundance of Enterobacteriaceae and Veillonellaceae observed in infected null mice. The microbiota of mice that were administered the antibiotic and infected with Salmonella was dominated by Proteobacteria. Conclusion The study findings showed that the absence of mCRAMP modulated both host responses and the enteric microbiota enhancing local and systemic infection by Salmonella Typhimurium.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3938
Author(s):  
Ivan Simko

The color of plant leaves is moderated by the content of pigments, which can show considerable dorsiventral distribution. Two typical examples are leafy vegetables and ornamentals, wherein red and green color surfaces can be seen on the same leaf. The proof of concept is provided for predictive modeling of a leaf conceptual mid-point quasi-color (CMQ) from the content of pigments. The CMQ idea is based on the hypothesis that the content of pigments in leaves is associated with the combined color from both surfaces. The CMQ, which is calculated from CIELab color coordinates at adaxial and abaxial antipodes, is thus not an actual color, but a notion that can be used in modeling. The CMQ coordinates, predicted from the content of chlorophylls and anthocyanins by means of an artificial neural network (ANN), matched well with the CMQ coordinates empirically found on photosynthetically active leaves of lettuce (Lactuca sativa L.), but also with other plant species with comparable leaf attributes. Modeled values of lightness (qL*) decreased with the increasing content of both pigments, while the redness or greenness (qa*) and yellowness or blueness (qb*) of the CMQ were affected more by a relative content of chlorophylls and anthocyanins in leaves. The highest vividness of quasi-colors (qC*) was modeled for leaves with a high content of either pigment alone. The model predicted a substantially duller quasi-color for leaves with chlorophylls and anthocyanins present together, particularly when both pigments were present at very high levels.


2016 ◽  
Vol 31 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Eun-Sun Lee ◽  
◽  
Min-Gyu Kwak ◽  
Won-Il Kim ◽  
Hyun Mi An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document