An Origin of Transfer (oriT) on the Conjugative Element pRS01 from Lactococcus lactis subsp.lactis ML3

1998 ◽  
Vol 64 (4) ◽  
pp. 1541-1544 ◽  
Author(s):  
David A. Mills ◽  
Trevor G. Phister ◽  
Gary M. Dunny ◽  
Larry L. McKay

ABSTRACT Previous analysis of the Tra1 region of the conjugative element pRS01 from Lactococcus lactis subsp. lactis ML3 suggested that an origin of transfer (oriT) was present. Deletion derivatives of this cloned Tra1 region were assayed for mobilization in the presence of the wild-type pRS01 element intrans. The pRS01 oriT was localized to a 446-nucleotide segment in the intergenic region between open reading frames ltrD and ltrE. Sequence analysis of this region revealed a cluster of direct and inverted repeat structures characteristic of oriT regions associated with other conjugative systems.

2001 ◽  
Vol 67 (8) ◽  
pp. 3564-3576 ◽  
Author(s):  
Chitladda Mahanivong ◽  
John D. Boyce ◽  
Barrie E. Davidson ◽  
Alan J. Hillier

ABSTRACT The Lactococcus lactis temperate bacteriophage BK5-T is one of twelve type phages that define L. lactis phage species. This paper describes the nucleotide sequence and analysis of a 21-kbp region of the BK5-T genome and completes the nucleotide sequence of the genome of this phage. The 40,003-nucleotide linear genome encodes 63 open reading frames. Sequence runoff experiments showed that the cohesive ends of the BK5-T genome contained a 12-bp 3′ single-stranded overhang with the sequence 5′-CACACACATAGG-3′. Two major BK5-T structural proteins, of approximately 30 and 20 kDa, were identified, and N-terminal sequence analysis determined that they were encoded by orf7 and orf12, respectively. A 169-bp fragment containing a 37-bp direct repeat and several smaller repeat sequences conferred resistance to BK5-T infection when introduced in trans to the host cell and is likely a part of the BK5-T origin of replication (ori).


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 417-426
Author(s):  
Richard W Beeman ◽  
M Scott Thomson ◽  
John M Clark ◽  
Marco A DeCamillis ◽  
Susan J Brown ◽  
...  

Abstract A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains.


1999 ◽  
Vol 65 (7) ◽  
pp. 2871-2876 ◽  
Author(s):  
Sandra Iurescia ◽  
Andrea M. Marconi ◽  
Daniela Tofani ◽  
Augusto Gambacorta ◽  
Annalisa Paternò ◽  
...  

ABSTRACT The M1 strain, able to grow on β-myrcene as the sole carbon and energy source, was isolated by an enrichment culture and identified as a Pseudomonas sp. One β-myrcene-negative mutant, called N22, obtained by transposon mutagenesis, accumulated (E)-2-methyl-6-methylen-2,7-octadien-1-ol (or myrcen-8-ol) as a unique β-myrcene biotransformation product. This compound was identified by gas chromatography-mass spectrometry. We cloned and sequenced the DNA regions flanking the transposon and used these fragments to identify the M1 genomic library clones containing the wild-type copy of the interrupted gene. One of the selected cosmids, containing a 22-kb genomic insert, was able to complement the N22 mutant for growth on β-myrcene. A 5,370-bp-long sequence spanning the region interrupted by the transposon in the mutant was determined. We identified four open reading frames, named myrA,myrB, myrC, and myrD, which can potentially code for an aldehyde dehydrogenase, an alcohol dehydrogenase, an acyl-coenzyme A (CoA) synthetase, and an enoyl-CoA hydratase, respectively. myrA, myrB, andmyrC are likely organized in an operon, since they are separated by only 19 and 36 nucleotides (nt), respectively, and no promoter-like sequences have been found in these regions. ThemyrD gene starts 224 nt upstream of myrA and is divergently transcribed. The myrB sequence was found to be completely identical to the one flanking the transposon in the mutant. Therefore, we could ascertain that the transposon had been inserted inside the myrB gene, in complete agreement with the accumulation of (E)-2-methyl-6-methylen-2,7-octadien-1-ol by the mutant. Based on sequence and biotransformation data, we propose a pathway for β-myrcene catabolism in Pseudomonas sp. strain M1.


2002 ◽  
Vol 184 (12) ◽  
pp. 3411-3415 ◽  
Author(s):  
Kohei Goshi ◽  
Tetsuya Uchida ◽  
Alexander Lezhava ◽  
Masayuki Yamasaki ◽  
Keiichiro Hiratsu ◽  
...  

ABSTRACT Cloning and sequencing of the telomere of Streptomyces griseus revealed five palindromic sequences in the terminal 116 nucleotides, all of which can make a hairpin loop structure. However, the end sequence cannot form the foldback secondary structure that is common in Streptomyces telomeres and is suggested to be necessary for terminal replication. Both inside ends of the terminal inverted repeat (TIR) were also cloned and sequenced. The results confirmed the size of the TIR to be 24 kb and identified two almost identical open reading frames that might have been involved in the formation of the TIR.


Yeast ◽  
1995 ◽  
Vol 11 (13) ◽  
pp. 1281-1288 ◽  
Author(s):  
Antonio Casamayor ◽  
Martí Aldea ◽  
Celia Casas ◽  
Enrique Herrero ◽  
Francisco-Javier Gamo ◽  
...  

Gene ◽  
2002 ◽  
Vol 298 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Hisashi Nishigawa ◽  
Kenro Oshima ◽  
Shigeyuki Kakizawa ◽  
Hee-Young Jung ◽  
Tsutomu Kuboyama ◽  
...  

1998 ◽  
Vol 71 (1) ◽  
pp. 11-19 ◽  
Author(s):  
YUJI YASUKOCHI ◽  
TOSHIO KANDA ◽  
TOSHIKI TAMURA

To clone the Bombyx xanthine dehydrogenase (XDH) gene as a dominant marker for silkworm transgenesis, we performed nested reverse transcriptase–polymerase chain reaction (RT-PCR) using embryonic mRNA and primers designed from the conserved region of Drosophila and rat XDH genes. Sequencing of amplified 180 bp fragments showed that two different sequences were present in the fragments. Since both possessed striking similarity to XDH genes of other organisms, we considered these to be portions of silkworm XDH genes and designated them BmXDH1 and BmXDH2. Subsequently we cloned separately the entire region of the two cDNAs by PCR using phage DNA of an embryonic cDNA library and sequenced them. The two cDNAs were around 4 kb in size and possessed complete open reading frames. The deduced amino acid sequences of the two BmXDHs were very similar to each other and to those of other organisms. The expression pattern of wild-type larvae basically followed the tissue specificity of the enzyme and no significant difference was observed between the two XDH genes. The expression of both genes was detected in the XDH-deficient mutants, oq and og, but non-synonymous substitutions were specifically detected in the BmXDH1 of the oq mutant. In addition, a length polymorphism of the second intron of the BmXDH1 co-segregated with the oq translucent phenotype, suggesting that deficiency in BmXDH1 is the cause of the oq translucent phenotype.


Sign in / Sign up

Export Citation Format

Share Document