scholarly journals Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic α- and γ-Proteobacteria from the Deep Sea

2003 ◽  
Vol 69 (5) ◽  
pp. 2906-2913 ◽  
Author(s):  
K. J. Edwards ◽  
D. R. Rogers ◽  
C. O. Wirsen ◽  
T. M. McCollom

ABSTRACT We report the isolation and physiological characterization of novel, psychrophilic, iron-oxidizing bacteria (FeOB) from low-temperature weathering habitats in the vicinity of the Juan de Fuca deep-sea hydrothermal area. The FeOB were cultured from the surfaces of weathered rock and metalliferous sediments. They are capable of growth on a variety of natural and synthetic solid rock and mineral substrates, such as pyrite (FeS2), basalt glass (∼10 wt% FeO), and siderite (FeCO3), as their sole energy source, as well as numerous aqueous Fe substrates. Growth temperature characteristics correspond to the in situ environmental conditions of sample origin; the FeOB grow optimally at 3 to 10°C and at generation times ranging from 57 to 74 h. They are obligate chemolithoautotrophs and grow optimally under microaerobic conditions in the presence of an oxygen gradient or anaerobically in the presence of nitrate. None of the strains are capable of using any organic or alternate inorganic substrates tested. The bacteria are phylogenetically diverse and have no close Fe-oxidizing or autotrophic relatives represented in pure culture. One group of isolates are γ-Proteobacteria most closely related to the heterotrophic bacterium Marinobacter aquaeolei (87 to 94% sequence similarity). A second group of isolates are α-Proteobacteria most closely related to the deep-sea heterotrophic bacterium Hyphomonas jannaschiana (81 to 89% sequence similarity). This study provides further evidence for the evolutionarily widespread capacity for Fe oxidation among bacteria and suggests that FeOB may play an unrecognized geomicrobiological role in rock weathering in the deep sea.

2001 ◽  
Vol 14 (4) ◽  
pp. 545-554 ◽  
Author(s):  
Gustavo Hernández-Guzmán ◽  
Ariel Alvarez-Morales

Pseudomonas syringae pv. phaseolicola is the causal agent of the “halo blight” disease of beans. A key component in the development of the disease is a nonhost-specific toxin, Nδ-(N'-sulphodiaminophosphinyl)-ornithyl-alanyl-homoarginine, known as phaseolotoxin. The homoarginine residue in this molecule has been suggested to be the product of Larginine:lysine amidinotransferase activity, previously detected in extracts of P. syringae pv. phaseolicola grown under conditions of phaseolotoxin production. We report the isolation and characterization of an amidinotransferase gene (amtA) from P. syringae pv. phaseolicola coding for a polypeptide of 362 residues (41.36 kDa) and showing approximately 40% sequence similarity to Larginine:inosamine-phosphate amidinotransferase from three species of Streptomyces spp. and 50.4% with an Larginine:glycine amidinotransferase from human mitochondria. The cysteine, histidine, and aspartic acid residues involved in substrate binding are conserved. Furthermore, expression of the amtA and argK genes and phaseolotoxin production occurs at 18°C but not at 28°C. An amidinotransferase insertion mutant was obtained that lost the capacity to synthesize homoarginine and phaseolotoxin. These results show that the amtA gene isolated is responsible for the amidinotransferase activity detected previously and that phaseolotoxin production depends upon the activity of this gene.


2019 ◽  
Vol 24 (2) ◽  
pp. 7-16
Author(s):  
Nabin Rana ◽  
Saraswoti Khadka ◽  
Bishnu Prasad Marasini ◽  
Bishnu Joshi ◽  
Pramod Poudel ◽  
...  

 Realizing myxobacteria as a potential source of antimicrobial metabolites, we pursued research to isolate myxobacteria showing antimicrobial properties. We have successfully isolated three strains (NR-1, NR-2, NR-3) using the Escherichia coli baiting technique. These isolates showed typical myxobacterial growth characteristics. Phylogenetic analysis showed that all the strains (NR-1, NR-2, NR-3) belong to the family Archangiaceae, suborder Cystobacterineae, and order Myxococcales. Furthermore, 16S rRNA gene sequence similarity searched through BLAST revealed that strain NR-1 showed the closest similarity (91.8 %) to the type strain Vitiosangium cumulatum (NR-156939), NR-2 showed (98.8 %) to the type of Cystobacter badius (NR-043940), and NR-3 showed the closest similarity (83.5 %) to the type of strain Cystobacter fuscus (KP-306730). All isolates showed better growth in 0.5-1 % NaCl and pH around 7.0, whereas no growth was observed at pH 9.0 and below 5.0. All strains showed better growth at 32° C and hydrolyzed starch, whereas casein was efficiently hydrolyzed by NR-1 and NR-2. Besides, preliminary antimicrobial tests from crude extracts showed activities against Gram-positive, Gram-negative bacteria, and fungi. Our findings suggest that the arcane soil habitats of Nepal harbor myxobacteria with the capability to produce diverse antimicrobial activities that may be explored to overcome the rapidly rising global concern about antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document