scholarly journals Quantitative Real-Time PCR Assays To Identify and Quantify Fecal Bifidobacterium Species in Infants Receiving a Prebiotic Infant Formula

2005 ◽  
Vol 71 (5) ◽  
pp. 2318-2324 ◽  
Author(s):  
Monique Haarman ◽  
Jan Knol

ABSTRACT A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.

2009 ◽  
Vol 75 (6) ◽  
pp. 1534-1545 ◽  
Author(s):  
Francesca Turroni ◽  
Elena Foroni ◽  
Paola Pizzetti ◽  
Vanessa Giubellini ◽  
Angela Ribbera ◽  
...  

ABSTRACT Although the health-promoting roles of bifidobacteria are widely accepted, the diversity of bifidobacteria among the human intestinal microbiota is still poorly understood. We performed a census of bifidobacterial populations from human intestinal mucosal and fecal samples by plating them on selective medium, coupled with molecular analysis of selected rRNA gene sequences (16S rRNA gene and internally transcribed spacer [ITS] 16S-23S spacer sequences) of isolated colonies. A total of 900 isolates were collected, of which 704 were shown to belong to bifidobacteria. Analyses showed that the culturable bifidobacterial population from intestinal and fecal samples include six main phylogenetic taxa, i.e., Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium adolescentis, Bifidobacterium pseudolongum, Bifidobacterium breve, and Bifidobacterium bifidum, and two species mostly detected in fecal samples, i.e., Bifidobacterium dentium and Bifidobacterium animalis subp. lactis. Analysis of bifidobacterial distribution based on age of the subject revealed that certain identified bifidobacterial species were exclusively present in the adult human gut microbiota whereas others were found to be widely distributed. We encountered significant intersubject variability and composition differences between fecal and mucosa-adherent bifidobacterial communities. In contrast, a modest diversification of bifidobacterial populations was noticed between different intestinal regions within the same individual (intrasubject variability). Notably, a small number of bifidobacterial isolates were shown to display a wide ecological distribution, thus suggesting that they possess a broad colonization capacity.


2005 ◽  
Vol 71 (8) ◽  
pp. 4679-4689 ◽  
Author(s):  
Kaouther Ben-Amor ◽  
Hans Heilig ◽  
Hauke Smidt ◽  
Elaine E. Vaughan ◽  
Tjakko Abee ◽  
...  

ABSTRACT A novel approach combining a flow cytometric in situ viability assay with 16S rRNA gene analysis was used to study the relationship between diversity and activity of the fecal microbiota. Simultaneous staining with propidium iodide (PI) and SYTO BC provided clear discrimination between intact cells (49%), injured or damaged cells (19%), and dead cells (32%). The three subpopulations were sorted and characterized by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons obtained from the total and bifidobacterial communities. This analysis revealed that not only the total community but also the distinct subpopulations are characteristic for each individual. Cloning and sequencing of the dominant bands of the DGGE patterns showed that most of clones retrieved from the live, injured, and dead fractions belonged to Clostridium coccoides, Clostridium leptum, and Bacteroides. We found that some of the butyrate-producing related bacteria, such as Eubacterium rectale and Eubacterium hallii, were obviously viable at the time of sampling. However, amplicons affiliated with Bacteroides and Ruminococcus obeum- and Eubacterium biforme-like bacteria, as well as Butyrivibrio crossotus, were obtained especially from the dead population. Furthermore, some bacterial clones were recovered from all sorted fractions, and this was especially noticeable for the Clostridium leptum cluster. The bifidobacterial phylotypes identified in total samples and sorted fractions were assigned to Bifidobacterium adolescentis, Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium pseudocatenulatum, and Bifidobacterium bifidum. Phylogenetic analysis of the live, dead, and injured cells revealed a remarkable physiological heterogeneity within these bacterial populations; B. longum and B. infantis were retrieved from all sorted fractions, while B. adolescentis was recovered mostly from the sorted dead fraction.


Author(s):  
Bingquan Zhu ◽  
Shuangshuang Zheng ◽  
Kexin Lin ◽  
Xin Xu ◽  
Lina Lv ◽  
...  

Several lines of evidence suggest that the intestinal microbiota plays crucial roles in infant development, and that it is highly influenced by extrinsic and intrinsic factors. Prebiotic-containing infant formula may increase gastrointestinal tolerance and improve commensal microbiota composition. However, it remains unknown whether supplementation of milk-formulas with prebiotics and 1,3-olein-2-palmitin (OPO) can achieve feeding outcomes similar to those of breastfeeding. In the present study, we investigated the effects of two kinds of infant formula with different additives on the overall diversity and composition of the fecal microbiota, to determine which was closer to breastfeeding. A total of 108 infants were enrolled, including breastfeeding (n=59) and formula feeding group (n=49). The formula feeding infants were prospectively randomly divided into a standard formula group (n=18), and a supplemented formula group(n=31). The fecal samples were collected at 4 months after intervention. Fecal microbiota analysis targeting the V4 region of the 16S rRNA gene was performed using MiSeq sequencing. The overall bacterial diversity and composition, key functional bacteria, and predictive functional profiles in the two different formula groups were compared with breastfeeding group. We found that the alpha diversity of the gut microbiota was not significantly different between the OPO and breastfeeding groups with Chaos 1 index (p=0.346). The relative abundances of Enhydrobacter and Akkermansia in the OPO group were more similar to those of the breastfeeding group than to those of the standard formula group. The gut microbiota metabolism function prediction analysis showed that the supplemented formula group was similar to the breastfeeding group in terms of ureolysis (p=0.297). These findings suggest that, when formula supplemented with prebiotics and OPO was given, the overall bacterial diversity and parts of the composition of the fecal microbiota would be similar to that of breastfeeding infants.


2002 ◽  
Vol 68 (5) ◽  
pp. 2420-2427 ◽  
Author(s):  
Teresa Requena ◽  
Jeremy Burton ◽  
Takahiro Matsuki ◽  
Karen Munro ◽  
Mary Alice Simon ◽  
...  

ABSTRACT Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.


2006 ◽  
Vol 72 (9) ◽  
pp. 5990-5997 ◽  
Author(s):  
Tom Vanhoutte ◽  
Vicky De Preter ◽  
Evie De Brandt ◽  
Kristin Verbeke ◽  
Jean Swings ◽  
...  

ABSTRACT Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V3 primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S. boulardii did not display any detectable universal changes in the DGGE profiles, nor did it influence the bifidobacterial levels. This study highlighted the capacity of an integrated approach consisting of DGGE analysis and RT-PCR to monitor and quantify pronounced changes in the fecal microbiota of healthy subjects upon functional food administration.


2004 ◽  
Vol 70 (4) ◽  
pp. 2129-2136 ◽  
Author(s):  
Gerald W. Tannock ◽  
Karen Munro ◽  
Rodrigo Bibiloni ◽  
Mary A. Simon ◽  
Patrick Hargreaves ◽  
...  

ABSTRACT Human subjects consumed biscuits containing either galacto-oligosaccharides or fructo-oligosaccharides in a double-blinded, crossover study. The impact of supplementing the diet with three biscuits per day on the fecal microbiota was evaluated by selective culture of particular bacterial groups, measurement of β-galactosidase activity, and nucleic acid-based analytical methods (PCR-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescent in situ hybridization). The composition of the bifidobacterial populations was monitored at the level of species (PCR-DGGE) and strains (pulsed-field gel electrophoresis of DNA digests), and representative cultures were tested quantitatively for their ability to use galacto-oligosaccharides. Technical improvements to DGGE analysis of the microbiota were made by the use of an internal standard that allowed valid comparisons of fragment staining intensities to be made between profiles, the use of S1 nuclease digestion to remove single-stranded DNA to facilitate cloning of DNA sequences cut from gels, and the extraction of RNA to be used as the template in reverse transcription-PCR-DGGE. RNA-DGGE profiles were markedly different (Dice's similarity coefficient, 58.5%) from those generated by DNA-DGGE. Neither the sizes of the bacterial populations nor the DNA-DGGE profiles of the microbiota were altered by the consumption of the biscuits, but the RNA-DGGE profiles were altered by the detection or increased staining intensity of 16S rRNA gene sequences originating from Bifidobacterium adolescentis and/or Colinsella aerofaciens in the feces of 11 of 15 subjects. β-Galactosidase activity was elevated in the feces of some subjects as a result of biscuit consumption. Subjects differed in the ability of the bifidobacterial strains harbored in their feces to use galacto-oligosaccharides. Our observations suggest that a phylogenetic approach to analysis of the gut ecosystem may not always be optimal and that a more physiological (biochemical) method might be more informative.


2013 ◽  
Vol 79 (19) ◽  
pp. 6040-6049 ◽  
Author(s):  
Santiago Ruiz-Moyano ◽  
Sarah M. Totten ◽  
Daniel A. Garrido ◽  
Jennifer T. Smilowitz ◽  
J. Bruce German ◽  
...  

ABSTRACTHuman milk contains a high concentration of complex oligosaccharides that influence the composition of the intestinal microbiota in breast-fed infants. Previous studies have indicated that select species such asBifidobacterium longumsubsp.infantisandBifidobacterium bifidumcan utilize human milk oligosaccharides (HMO)in vitroas the sole carbon source, while the relatively fewB. longumsubsp.longumandBifidobacterium breveisolates tested appear less adapted to these substrates. Considering the high frequency at whichB. breveis isolated from breast-fed infant feces, we postulated that someB. brevestrains can more vigorously consume HMO and thus are enriched in the breast-fed infant gastrointestinal tract. To examine this, a number ofB. breveisolates from breast-fed infant feces were characterized for the presence of different glycosyl hydrolases that participate in HMO utilization, as well as by their ability to grow on HMO or specific HMO species such as lacto-N-tetraose (LNT) and fucosyllactose. AllB. brevestrains showed high levels of growth on LNT and lacto-N-neotetraose (LNnT), and, in general, growth on total HMO was moderate for most of the strains, with several strain differences. Growth and consumption of fucosylated HMO were strain dependent, mostly in isolates possessing a glycosyl hydrolase family 29 α-fucosidase. Glycoprofiling of the spent supernatant after HMO fermentation by select strains revealed that allB. brevestrains can utilize sialylated HMO to a certain extent, especially sialyl-lacto-N-tetraose. Interestingly, this specific oligosaccharide was depleted before neutral LNT by strain SC95. In aggregate, this work indicates that the HMO consumption phenotype inB. breveis variable; however, some strains display specific adaptations to these substrates, enabling more vigorous consumption of fucosylated and sialylated HMO. These results provide a rationale for the predominance of this species in breast-fed infant feces and contribute to a more accurate picture of the ecology of the developing infant intestinal microbiota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ayako Horigome ◽  
Ken Hisata ◽  
Toshitaka Odamaki ◽  
Noriyuki Iwabuchi ◽  
Jin-zhong Xiao ◽  
...  

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7–9.3 weeks in the M-16V group and 2.1–6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P &lt; 0.01), whereas that of Proteobacteria was significantly lower (P &lt; 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants’ guts.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262317
Author(s):  
Giovana S. Slanzon ◽  
Benjamin J. Ridenhour ◽  
Dale A. Moore ◽  
William M. Sischo ◽  
Lindsay M. Parrish ◽  
...  

Gastrointestinal disease (GI) is the most common illness in pre-weaned dairy calves. Studies have associated the fecal microbiome composition with health status, but it remains unclear how the microbiome changes across different levels of GI disease and breeds. Our objective was to associate the clinical symptoms of GI disease with the fecal microbiome. Fecal samples were collected from calves (n = 167) of different breeds (Holstein, Jersey, Jersey-cross and beef-cross) from 4–21 d of age. Daily clinical evaluations assessed health status. Calves with loose or watery feces were diagnosed with diarrhea and classified as bright-sick (BS) or depressed-sick (DS) according to behavior. Calves with normal or semiformed feces and no clinical illness were classified as healthy (H). One hundred and three fecal samples were obtained from consistently healthy calves and 64 samples were from calves with diarrhea (n = 39 BS; n = 25 DS). The V3-V4 region of 16S rRNA gene was sequenced and analyzed. Differences were identified by a linear-mixed effects model with a negative binomial error. DS and Jersey calves had a higher relative abundance of Streptococcus gallolyticus relative to H Holstein calves. In addition, DS calves had a lower relative abundance of Bifidobacterium longum and an enrichment of Escherichia coli. Species of the genus Lactobacillus, such as an unclassified Lactobacillus, Lactobacillus reuteri, and Lactobacillus salivarius were enriched in calves with GI disease. Moreover, we created a model to predict GI disease based on the fecal microbiome composition. The presence of Eggerthella lenta, Bifidobacterium longum, and Collinsella aerofaciens were associated with a healthy clinical outcome. Although lactobacilli are often associated with beneficial probiotic properties, the presence of E. coli and Lactobacillus species had the highest coefficients positively associated with GI disease prediction. Our results indicate that there are differences in the fecal microbiome of calves associated with GI disease severity and breed specificities.


2014 ◽  
Vol 80 (8) ◽  
pp. 2546-2554 ◽  
Author(s):  
Zongxin Ling ◽  
Zailing Li ◽  
Xia Liu ◽  
Yiwen Cheng ◽  
Yueqiu Luo ◽  
...  

ABSTRACTIncreasing evidence suggests that perturbations in the intestinal microbiota composition of infants are implicated in the pathogenesis of food allergy (FA), while the actual structure and composition of the intestinal microbiota in human beings with FA remain unclear. Microbial diversity and composition were analyzed with parallel barcoded 454 pyrosequencing targeting the 16S rRNA gene hypervariable V1-V3 regions in the feces of 34 infants with FA (17 IgE mediated and 17 non-IgE mediated) and 45 healthy controls. Here, we showed that several key FA-associated bacterial phylotypes, but not the overall microbiota diversity, significantly changed in infancy fecal microbiota with FA and were associated with the development of FA. The proportion of abundantBacteroidetes,Proteobacteria, andActinobacteriaphyla were significantly reduced, while theFirmicutesphylum was highly enriched in the FA group (P< 0.05). AbundantClostridiaceae1 organisms were prevalent in infants with FA at the family level (P= 0.016). FA-enriched phylotypes negatively correlated with interleukin-10, for example, the generaEnterococcusandStaphylococcus. Despite profound interindividual variability, levels of 20 predominant genera were significantly different between the FA and healthy control groups (P< 0.05). Infants with IgE-mediated FA had increased levels ofClostridium sensu strictoandAnaerobacterand decreased levels ofBacteroidesandClostridiumXVIII (P< 0.05). A positive correlation was observed betweenClostridium sensu strictoand serum-specific IgE (R= 0.655,P< 0.001). The specific microbiota signature could distinguish infants with IgE-mediated FA from non-IgE-mediated ones. Detailed microbiota analysis of a well-characterized cohort of infants with FA showed that dysbiosis of fecal microbiota with several FA-associated key phylotypes may play a pathogenic role in FA.


Sign in / Sign up

Export Citation Format

Share Document