A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders

Author(s):  
Shokufeh Ghasemian Sorboni ◽  
Hanieh Shakeri Moghaddam ◽  
Reza Jafarzadeh-Esfehani ◽  
Saman Soleimanpour

The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT).

2020 ◽  
Vol 3 (2) ◽  
pp. 379-383
Author(s):  
Matthew Obaineh Ojezele ◽  
Simon Irikefe Ovuakporaye ◽  
Emmanuel Adesola Adedapo

The studies on microbiome encountered a blast, lately, as scientists become mindful of the role of microbiota in the advancement of specifi c kinds of maladies. The human microbiome is described as a community of microorganisms of different taxa colonizing the human body; this includes the metagenomics and metabolomics of these organisms. Humans have customized microbiome in terms of distribution and composition which are partly determined by host genotype as well as the initial colonization which takes place after delivery. The human gut microbiome has a vital infl uence on immunity and how it responds to body signals, which is very important for the lymphoid tissue growth, maintenance, and regulation of intestinal immunity. This review aimed at providing an overview of the role of the human microbiome in health spanning the development of the microbiome in utero to postnatal period. 


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Safa Salim ◽  
Ayesha Banu ◽  
Amira Alwa ◽  
Swetha B. M. Gowda ◽  
Farhan Mohammad

AbstractThe idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.


2013 ◽  
Vol 218 (3) ◽  
pp. R37-R47 ◽  
Author(s):  
James M Evans ◽  
Laura S Morris ◽  
Julian R Marchesi

The human microbiome contains a vast array of microbes and genes that show greater complexity than the host's own karyome; the functions of many of these microbes are beneficial and show co-evolution with the host, while others are detrimental. The microbiota that colonises the gut is now being considered as a virtual organ or emergent system, with properties that need to be integrated into host biology and physiology. Unlike other organs, the functions that the gut microbiota plays in the host are as yet not fully understood and can be quite easily disrupted by antibiotics, diet or surgery. In this review, we look at some of the best-characterised functions that only the gut microbiota plays and how it interacts with the host's endocrine system and we try to make it clear that the 21st-century biology cannot afford to ignore this facet of biology, if it wants to fully understand what makes us human.


2021 ◽  
Vol 25 (4) ◽  
pp. 383-387
Author(s):  
Jinbing Bai ◽  
Wenhui Zhang ◽  
Zahra Amirkhanzadeh Barandouzir

Author(s):  
Roberto Pacifici

Abstract Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.


2021 ◽  
Vol 7 (1) ◽  
pp. 200-222
Author(s):  
S. Bulgakova ◽  
N. Zakharova ◽  
P. Romanchuk

In studies Romanchuk N. P. from invention in 2010 (A method for producing a cereal component for an instant food product and a method for producing a functional instant food product. RF patent for invention №2423873, consisting in increasing the preventive effect on the human body through the introduction of vital food substances into a functional food product to suppress free radical activity, invasive detoxification of the human body, optimizing neurogenic regulation of vascular tone in arterial hypertension and restoring reproductive functions in males and females by optimizing the quality structure of product components), to the present (https://doi.org/10.33619/2414-2948/58/14) it has been shown that a new managed healthy biomicrobiota and personalized functional and balanced nutrition of the “brain and microbiota” is a long-term medical program of the patient, which allows the combined use of nutritional epigenetics and pharmaceuticals, and most importantly the prevention of polypharmacy. The main engine of human longevity is when microbiological memory remains stable, and the diet of functional (healthy) dietary nutrition and the structure of healthy biomicrobiota function almost unchanged. The human microbiome is a collection of all microbes that inhabit the body. The human gut microbiome is a unique collection of microorganisms that affect a number of important processes: from metabolic and immune to cognitive, and deviation of its composition from the norm leads to the development of various pathological conditions. Harmful changes in the composition or number of gut bacteria, commonly referred to as intestinal dysbacteriosis, have been associated with the development and progression of numerous diseases, including cardiovascular (CVD) diseases. Most CVD risk factors, including aging, obesity, certain dietary patterns, and sedentary lifestyles, have been shown to cause bowel dysbiosis. Dysbacteriosis is associated with gut inflammation and reduced gut barrier integrity, which in turn increases levels of circulating structural components of bacteria and microbial metabolites that may contribute to CVD development. The purpose of the present review is to summarize available data on the role of the gut microbiome in the regulation of cardiovascular function and pathological processes. Particular attention is paid to dietary-related microbiome changes, as well as cellular mechanisms by which the microbiome can alter CVD risk.


2020 ◽  
Vol 21 (21) ◽  
pp. 8133
Author(s):  
Martin Marônek ◽  
René Link ◽  
Giovanni Monteleone ◽  
Roman Gardlík ◽  
Carmine Stolfi

The human virome, which is a collection of all the viruses that are present in the human body, is increasingly being recognized as an essential part of the human microbiota. The human gastrointestinal tract and related organs (e.g., liver, pancreas, and gallbladder)—composing the gastrointestinal (or digestive) system—contain a huge number of viral particles which contribute to maintaining tissue homeostasis and keeping our body healthy. However, perturbations of the virome steady-state may, both directly and indirectly, ignite/sustain oncogenic mechanisms contributing to the initiation of a dysplastic process and/or cancer progression. In this review, we summarize and discuss the available evidence on the association and role of viruses in the development of cancers of the digestive system.


Blood ◽  
2019 ◽  
Vol 134 (24) ◽  
pp. 2139-2148 ◽  
Author(s):  
Motoko Koyama ◽  
Geoffrey R. Hill

Koyama and Hill review the role of the gut microbiome interaction with pretransplant conditioning injury in stimulating graft-versus-host disease.


2015 ◽  
Vol 55 (12) ◽  
pp. 1376 ◽  
Author(s):  
J. G. Muir ◽  
C. K. Yao ◽  
P. G. Gibson

Advancement in technologies to identify and quantify bacterial species in the gastrointestinal tract has escalated interest in its microbiome worldwide. There is enormous interest in understanding the roles that bacterial species play in gastrointestinal health and overall wellbeing. What constitutes a ‘healthy gut microbiome’ includes: favourable fermentation-dependent characteristics such as butyrate supply to all regions, minimisation of putrefaction of proteins, and adequate laxation. The relative abundance of specific bacterial species with certain functional characteristics is also important and include: traditional prebiotic bacteria – Bifidobacteria; strongly butyrate-producing – Clostridium coccoides and Faecalibacterium prausnitzi as well as a mucus-associated bacterium Akkermansia muciniphila. Manipulation of diet and dietary factors may be essential to favourably influence these fermentation-dependent parameters and select for growth of beneficial bacterial species. In this regard, this laboratory has identified indigestible oligosaccharides with prebiotic effects and now has an extensive database that quantifies indigestible oligosaccharides in a wide variety of foods including whole grains, cereals, legumes, seeds, nuts, fruits and vegetables. Future research in this area should consider the role of dietary components that best establish and maintain a ‘healthy gut microbiome’.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jennifer A. Fulcher

ABSTRACT Alterations in the gut microbiome during HIV infection have been implicated in chronic inflammation, but the role of the oral microbiome in this process is less clear. The article by M. K. Annavajhala, S. D. Khan, S. B. Sullivan, J. Shah, et al. (mSphere 5:e00798-19, 2020, https://doi.org/10.1128/mSphere.00798-19) investigated the relationship between oral and gut microbiome diversity and immune activation in patients with HIV on antiretroviral therapy. In this study, oral microbiome diversity was inversely associated with inflammatory markers such as soluble CD14 (sCD14), but surprisingly similar associations were not seen with gut microbiome diversity. Oral microbiome diversity was also associated with periodontitis in these patients. This study highlights the importance of continuing multisite examinations in studying the gastrointestinal tract microbiome and also stimulates important directions for future research defining the role of the oral-gut axis in HIV-associated inflammation.


Sign in / Sign up

Export Citation Format

Share Document