uvrY deletion and acetate reduce gut colonization of Crohn’s disease-associated adherent-invasive Escherichia coli by decreasing expression of type 1 fimbriae

2022 ◽  
Author(s):  
Tsuyoshi Miki ◽  
Yusuke Hoshino ◽  
Naoki Sudo ◽  
Masahiro Ito ◽  
Takeshi Haneda ◽  
...  

Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn’s disease. AIEC adapts to the gut environment by altering gene-expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type-1 fimbriae expression.

2007 ◽  
Vol 189 (13) ◽  
pp. 4860-4871 ◽  
Author(s):  
Marie-Agnès Bringer ◽  
Nathalie Rolhion ◽  
Anne-Lise Glasser ◽  
Arlette Darfeuille-Michaud

ABSTRACT Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-ΔdsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-ΔdsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Adeline Sivignon ◽  
Xibo Yan ◽  
Dimitri Alvarez Dorta ◽  
Richard Bonnet ◽  
Julie Bouckaert ◽  
...  

ABSTRACTThe ileal lesions of Crohn's disease (CD) patients are colonized by adherent-invasiveEscherichia coli(AIEC) bacteria. These bacteria adhere to mannose residues expressed by CEACAM6 on host cells in a type 1 pilus-dependent manner. In this study, we investigated different antagonists of FimH, the adhesin of type 1 pili, for their ability to block AIEC adhesion to intestinal epithelial cells (IEC). Monovalent and multivalent derivatives ofn-heptyl α-d-mannoside (HM), a nanomolar antagonist of FimH, were testedin vitroin IEC infected with the AIEC LF82 strain andin vivoby oral administration to CEACAM6-expressing mice infected with LF82 bacteria.In vitro, multivalent derivatives were more potent than the monovalent derivatives, with a gain of efficacy superior to their valencies, probably owing to their ability to form bacterial aggregates. Of note, HM and the multi-HM glycoconjugates exhibited lower efficacyin vivoin decreasing LF82 gut colonization. Interestingly, HM analogues functionalized with an isopropylamide (1A-HM) or β-cyclodextrin pharmacophore at the end of the heptyl tail (1CD-HM) exerted beneficial effectsin vivo. These two compounds strongly decreased the amount of LF82 bacteria in the feces of mice and that of bacteria associated with the gut mucosa when administered orally at a dose of 10 mg/kg of body weight after infection. Importantly, signs of colitis and intestinal inflammation induced by LF82 infection were also prevented. These results highlight the potential of the antiadhesive compounds to treat CD patients abnormally colonized by AIEC bacteria and point to an alternative to the current approach focusing on blocking proinflammatory mediators.IMPORTANCECurrent treatments for Crohn's disease (CD), including immunosuppressive agents, anti-tumor necrosis factor alpha (anti-TNF-α) and anti-integrin antibodies, focus on the symptoms but not on the cause of the disease. Adherent-invasiveEscherichia coli(AIEC) bacteria abnormally colonize the ileal mucosa of CD patients via the interaction of the mannose-specific adhesin FimH of type 1 pili with CEACAM6 mannosylated proteins expressed on the epithelial cell surface. Thus, we decided to develop an antiadhesive strategy based on synthetic FimH antagonists specifically targeting AIEC bacteria that would decrease intestinal inflammation. Heptylmannoside (HM)-based glycocompounds strongly inhibit AIEC adhesion to intestinal epithelial cellsin vitro. The antiadhesive effect of two of these compounds of relatively simple chemical structure was also observedin vivoin AIEC-infected CEACAM6-expressing mice and was associated with a reduction in the signs of colitis. These results suggest a new therapeutic approach for CD patients colonized by AIEC bacteria, based on the development of synthetic FimH antagonists.


2010 ◽  
Vol 192 (7) ◽  
pp. 1832-1843 ◽  
Author(s):  
Sylvie Miquel ◽  
Laurent Claret ◽  
Richard Bonnet ◽  
Imen Dorboz ◽  
Nicolas Barnich ◽  
...  

ABSTRACT The interaction of Crohn's disease (CD)-associated adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells depends on surface appendages, such as type 1 pili and flagella. Histone-like proteins operate as global regulators to control the expression of these virulence factors. We evaluated the role of histone-like proteins in AIEC reference strain LF82 during infection of intestinal epithelial cells, Intestine-407, and observed that the fis mRNA level was decreased. The role of Fis in AIEC LF82 was determined by studying the phenotype of an LF82 fis::Km mutant. This was the first mutant of strain LF82 that has been described thus far that is unable to express flagellin but still able to produce type 1 pili. The cyclic-di-GMP pathway linking flagella and type 1 pilus expression is not involved in Fis-mediated regulation, and we identified in the present study Fis-binding sites located upstream of the fimE gene and in the intergenic region between fimB and nanC of the fim operon encoding type 1 pili. The major consequence of decreased Fis expression in AIEC bacteria in contact with host cells is a direct downregulation of fimE expression, leading to the preferential ON phase of the fimS element. Thus, by maintaining type 1 pilus expression, AIEC bacteria, which interact with the gut mucosa, have greater ability to colonize and to induce inflammation in CD patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wael Elhenawy ◽  
Sarah Hordienko ◽  
Steven Gould ◽  
Alexander M. Oberc ◽  
Caressa N. Tsai ◽  
...  

AbstractAdherent-invasive Escherichia coli (AIEC) are pathogenic bacteria frequently isolated from patients who have Crohn’s disease (CD). Despite the phenotypic differences between AIEC and commensal E. coli, comparative genomic approaches have been unable to differentiate these two groups, making the identification of key virulence factors a challenge. Here, we conduct a high-resolution, in vivo genetic screen to map AIEC genes required for intestinal colonization of mice. In addition, we use in vivo RNA-sequencing to define the host-associated AIEC transcriptome. We identify diverse metabolic pathways required for efficient gut colonization by AIEC and show that a type IV secretion system (T4SS) is required to form biofilms on the surface of epithelial cells, thereby promoting AIEC persistence in the gut. E. coli isolated from CD patients are enriched for a T4SS, suggesting a possible connection to disease activity. Our findings establish the T4SS as a principal AIEC colonization factor and highlight the use of genome-wide screens in decoding the infection biology of CD-associated bacteria that otherwise lack a defined genetic signature.


2004 ◽  
Vol 72 (5) ◽  
pp. 2484-2493 ◽  
Author(s):  
Nicolas Barnich ◽  
Marie-Agnès Bringer ◽  
Laurent Claret ◽  
Arlette Darfeuille-Michaud

ABSTRACT Escherichia coli strain LF82 recovered from a chronic lesion of a patient with Crohn's disease (CD) is able to adhere to and invade cultured intestinal epithelial cells and to replicate within macrophages. One mutant selected for its impaired ability to invade epithelial cells had an insertion of a Tn phoA transposon within the nlpI gene encoding the lipoprotein NlpI. A NlpI-negative isogenic mutant showed a 35-fold decrease in its ability to adhere to and a 45-fold decrease in its ability to invade Intestine-407 cells, but its ability to survive and to replicate within macrophages was similar to that of wild-type strain LF82. In addition, this mutant did not express flagella and synthesized very small amounts of type 1 pili. Downregulation of type 1 pili in the NlpI-negative mutant resulted from a preferential switch toward the OFF position of the invertible DNA element located upstream of the fim operon. The FimB and FimE recombinases act in concert to control the switch, and a large decrease in fimB and fimE mRNA levels was observed. The absence of flagellar structures correlated with a drastic 19-fold decrease in the fliC mRNA level, regardless of the FlhD2C2 transcriptional regulator and of the σ28 transcription factor. The key role of NlpI in virulence is independent of type 1 pili and motility, since induced type 1 pilus expression and/or forced contact between bacteria and intestinal epithelial cells did not restore the ability of the NlpI mutant to adhere to and to invade intestinal epithelial cells.


2013 ◽  
Vol 56 (13) ◽  
pp. 5395-5406 ◽  
Author(s):  
Sami Brument ◽  
Adeline Sivignon ◽  
Tetiana I. Dumych ◽  
Nicolas Moreau ◽  
Goedele Roos ◽  
...  

2009 ◽  
Vol 206 (10) ◽  
pp. 2179-2189 ◽  
Author(s):  
Frédéric A. Carvalho ◽  
Nicolas Barnich ◽  
Adeline Sivignon ◽  
Claude Darcha ◽  
Carlos H.F. Chan ◽  
...  

Abnormal expression of CEACAM6 is observed at the apical surface of the ileal epithelium in Crohn's disease (CD) patients, and CD ileal lesions are colonized by pathogenic adherent-invasive Escherichia coli (AIEC). We investigated the ability of AIEC reference strain LF82 to colonize the intestinal mucosa and to induce inflammation in CEABAC10 transgenic mice expressing human CEACAMs. AIEC LF82 virulent bacteria, but not nonpathogenic E. coli K-12, were able to persist in the gut of CEABAC10 transgenic mice and to induce severe colitis with reduced survival rate, marked weight loss, increased rectal bleeding, presence of erosive lesions, mucosal inflammation, and increased proinflammatory cytokine expression. The colitis depended on type 1 pili expression by AIEC bacteria and on intestinal CEACAM expression because no sign of colitis was observed in transgenic mice infected with type 1 pili–negative LF82-ΔfimH isogenic mutant or in wild-type mice infected with AIEC LF82 bacteria. These findings strongly support the hypothesis that in CD patients having an abnormal intestinal expression of CEACAM6, AIEC bacteria via type 1 pili expression can colonize the intestinal mucosa and induce gut inflammation. Thus, targeting AIEC adhesion to gut mucosa represents a new strategy for clinicians to prevent and/or to treat ileal CD.


Sign in / Sign up

Export Citation Format

Share Document