scholarly journals Bacteriophage SP01 Gene Product 56 Inhibits Bacillus subtilis Cell Division by Interacting with FtsL and Disrupting Pbp2B and FtsW Recruitment

2020 ◽  
Vol 203 (2) ◽  
pp. e00463-20
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.

2020 ◽  
Author(s):  
Amit Bhambhani ◽  
Isabella Iadicicco ◽  
Jules Lee ◽  
Syed Ahmed ◽  
Max Belfatto ◽  
...  

ABSTRACTPrevious work identified gp56, encoded by the lytic bacteriophage SP01, as responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here we show that expression of the predicted 9.3-kDa gene product 56 (gp56) of SP01 inhibits latter stages of B. subtilis cell division without altering FtsZ ring assembly. GFP-tagged gp56 localizes to the membrane at the site of division. While its localization permits recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analysis suggest that gp56 localization and activity depends on its interaction with mid-recruited proteins DivIC and/or FtsL. Together these data support a model where gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCEResearch over the past decades has uncovered bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. Phage factors that cause cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanism of several identified phage factors that inhibit cytokinesis remain unexplored, including gp56 of bacteriophage SP01 of Bacillus subtilis. Here, we show that unlike related published examples of phage inhibition of cyotkinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and block recruitment of proteins needed for the septal cell wall synthesis.


2014 ◽  
Vol 80 (19) ◽  
pp. 6167-6174 ◽  
Author(s):  
Xiaohui Gao ◽  
Xiao Dong ◽  
Sundharraman Subramanian ◽  
Paige M. Matthews ◽  
Caleb A. Cooper ◽  
...  

ABSTRACTMicrobial processes, including biofilm formation, motility, and virulence, are often regulated by changes in the available concentration of cyclic dimeric guanosine monophosphate (c-di-GMP). Generally, high c-di-GMP concentrations are correlated with decreased motility and increased biofilm formation and low c-di-GMP concentrations are correlated with an increase in motility and activation of virulence pathways. The study of c-di-GMP is complicated, however, by the fact that organisms often encode dozens of redundant enzymes that synthesize and hydrolyze c-di-GMP, diguanylate cyclases (DGCs), and c-di-GMP phosphodiesterases (PDEs); thus, determining the contribution of any one particular enzyme is challenging. In an effort to develop a facile system to study c-di-GMP metabolic enzymes, we have engineered a suite ofBacillus subtilisstrains to assess the effect of individual heterologously expressed proteins on c-di-GMP levels. As a proof of principle, we characterized all 37 known genes encoding predicted DGCs and PDEs inClostridium difficileusing parallel readouts of swarming motility and fluorescence from green fluorescent protein (GFP) expressed under the control of a c-di-GMP-controlled riboswitch. We found that 27 of the 37 putativeC. difficile630 c-di-GMP metabolic enzymes had either active cyclase or phosphodiesterase activity, with agreement between our motility phenotypes and fluorescence-based c-di-GMP reporter. Finally, we show that there appears to be a threshold level of c-di-GMP needed to inhibit motility inBacillus subtilis.


2008 ◽  
Vol 190 (9) ◽  
pp. 3283-3292 ◽  
Author(s):  
Michal Letek ◽  
Efrén Ordóñez ◽  
José Vaquera ◽  
William Margolin ◽  
Klas Flärdh ◽  
...  

ABSTRACT The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVACg) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVACg-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVACg localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.


2005 ◽  
Vol 69 (4) ◽  
pp. 585-607 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Mariana G. Pinho

SUMMARY In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.


2008 ◽  
Vol 190 (21) ◽  
pp. 7096-7107 ◽  
Author(s):  
José Roberto Tavares ◽  
Robson F. de Souza ◽  
Guilherme Louzada Silva Meira ◽  
Frederico J. Gueiros-Filho

ABSTRACT Cell division in bacteria is carried out by an elaborate molecular machine composed of more than a dozen proteins and known as the divisome. Here we describe the characterization of a new divisome protein in Bacillus subtilis called YpsB. Sequence comparisons and phylogentic analysis demonstrated that YpsB is a paralog of the division site selection protein DivIVA. YpsB is present in several gram-positive bacteria and likely originated from the duplication of a DivIVA-like gene in the last common ancestor of bacteria of the orders Bacillales and Lactobacillales. We used green fluorescent protein microscopy to determine that YpsB localizes to the divisome. Similarly to that for DivIVA, the recruitment of YpsB to the divisome requires late division proteins and occurs significantly after Z-ring formation. In contrast to DivIVA, however, YpsB is not retained at the newly formed cell poles after septation. Deletion analysis suggests that the N terminus of YpsB is required to target the protein to the divisome. The high similarity between the N termini of YpsB and DivIVA suggests that the same region is involved in the targeting of DivIVA. YpsB is not essential for septum formation and does not appear to play a role in septum positioning. However, a ypsB deletion has a synthetic effect when combined with a mutation in the cell division gene ftsA. Thus, we conclude that YpsB is a novel B. subtilis cell division protein whose function has diverged from that of its paralog DivIVA.


2013 ◽  
Vol 79 (20) ◽  
pp. 6481-6490 ◽  
Author(s):  
Wout Overkamp ◽  
Katrin Beilharz ◽  
Ruud Detert Oude Weme ◽  
Ana Solopova ◽  
Harma Karsens ◽  
...  

ABSTRACTGreen fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localizationin vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two “superfolder” GFPs with codon adaptation specifically forBacillus subtilisandStreptococcus pneumoniaeand have benchmarked them against five other previously available variants of GFP inB. subtilis,S. pneumoniae, andLactococcus lactis, using promoter-gfpfusions. Surprisingly, the best-performing GFP under our experimental conditions inB. subtiliswas the one codon optimized forS. pneumoniaeandvice versa. The data and tools described in this study will be useful for cell biology studies in low-GC-rich Gram-positive bacteria.


1998 ◽  
Vol 180 (5) ◽  
pp. 1296-1304 ◽  
Author(s):  
Xuan-chuan Yu ◽  
Anthony H. Tran ◽  
Qin Sun ◽  
William Margolin

ABSTRACT Escherichia coli cell division protein FtsK is a homolog of Bacillus subtilis SpoIIIE and appears to act late in the septation process. To determine whether FtsK localizes to the septum, we fused three N-terminal segments of FtsK to green fluorescent protein (GFP) and expressed them in E. colicells. All three segments were sufficient to target GFP to the septum, suggesting that as little as the first 15% of the protein is a septum-targeting domain. Localized fluorescence was detectable only in cells containing a visible midcell constriction, suggesting that FtsK targeting normally occurs only at a late stage of septation. The largest two FtsK-GFP fusions were able at least partially to complement the ftsK44 mutation in trans, suggesting that the N- and C-terminal domains are functionally separable. However, overproduction of FtsK-GFP resulted in a late-septation phenotype similar to that of ftsK44, with fluorescent dots localized at the blocked septa, suggesting that high levels of the N-terminal domain may still localize but also inhibit FtsK activity. Interestingly, under these conditions fluorescence was also sometimes localized as bands at potential division sites, suggesting that FtsK-GFP is capable of targeting very early. In addition, FtsK-GFP localized to potential division sites in cephalexin-induced andftsI mutant filaments, further supporting the idea that FtsK-GFP can target early, perhaps by recognizing FtsZ directly. This hypothesis was supported by the failure of FtsK-GFP to localize inftsZ mutant filaments. In ftsK44 mutant filaments, FtsA and FtsZ were usually localized to potential division sites between the blocked septa. When the ftsK44 mutation was incorporated into the FtsK-GFP fusions, localization to midcell ranged between very weak and undetectable, suggesting that the FtsK44 mutant protein is defective in targeting the septum.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Yoon-Dong Park ◽  
Shu Hui Chen ◽  
Emma Camacho ◽  
Arturo Casadevall ◽  
Peter R. Williamson

ABSTRACT The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the transportation and degradation of proteins. We determined that Vps27, a key protein of the ESCRT-0 complex, is required for the transport of the virulence factor laccase to the cell wall in Cryptococcus neoformans. Laccase activity was perturbed, as was melanin production, in vps27Δ strains. In the absence of VPS27, there was an accumulation of multivesicular bodies with vacuolar fragmentation and mistargeting of the vacuolar carboxypeptidase CPY/Prc1, resulting in an extracellular localization. In addition, deletion of VPS27 resulted in a defect in laccase targeting of a Lac1-green fluorescent protein (GFP) fusion to the cell wall with trapping within intracellular puncta; this deletion was accompanied by reduced virulence in a mouse model. However, the actin cytoskeleton remained intact, suggesting that the trafficking defect is not due to defects in actin-related localization. Extracellular vesicle maturation was also defective in the vps27Δ mutant, which had a larger vesicle size as measured by dynamic light scattering. Our data identify cryptococcal VPS27 as a required gene for laccase trafficking and attenuates virulence of C. neoformans in a mouse intravenous (i.v.) meningitis model.


2018 ◽  
Vol 201 (4) ◽  
Author(s):  
Christopher J. LaBreck ◽  
Joseph Conti ◽  
Marissa G. Viola ◽  
Jodi L. Camberg

ABSTRACTThe Min system inEscherichia coli, consisting of MinC, MinD, and MinE proteins, regulates division site selection by preventing assembly of the FtsZ-ring (Z-ring) and exhibits polar oscillationin vivo. MinC antagonizes FtsZ polymerization, andin vivo, the cellular location of MinC is controlled by a direct association with MinD at the membrane. To further understand the interactions of MinC with FtsZ and MinD, we performed a mutagenesis screen to identify substitutions inminCthat are associated with defects in cell division. We identified amino acids in both the N- and C-domains of MinC that are important for direct interactions with FtsZ and MinDin vitro, as well as mutations that modify the observedin vivooscillation of green fluorescent protein (GFP)-MinC. Our results indicate that there are two distinct surface-exposed sites on MinC that are important for direct interactions with FtsZ, one at a cleft on the surface of the N-domain and a second on the C-domain that is adjacent to the MinD interaction site. Mutation of either of these sites leads to slower oscillation of GFP-MinCin vivo, although the MinC mutant proteins are still capable of a direct interaction with MinD in phospholipid recruitment assays. Furthermore, we demonstrate that interactions between FtsZ and both sites of MinC identified here are important for assembly of FtsZ-MinC-MinD complexes and that the conserved C-terminal end of FtsZ is not required for MinC-MinD complex formation with GTP-dependent FtsZ polymers.IMPORTANCEBacterial cell division proceeds through the coordinated assembly of the FtsZ-ring, or Z-ring, at the site of division. Assembly of the Z-ring requires polymerization of FtsZ, which is regulated by several proteins in the cell. InEscherichia coli, the Min system, which contains MinC, MinD, and MinE proteins, exhibits polar oscillation and inhibits the assembly of FtsZ at nonseptal locations. Here, we identify regions on the surface of MinC that are important for contacting FtsZ and destabilizing FtsZ polymers.


2012 ◽  
Vol 11 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Yekaterina Poloz ◽  
Andrew Catalano ◽  
Danton H. O'Day

ABSTRACTBestatin methyl ester (BME) is an inhibitor of Zn2+-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have usedDictyosteliumas a model organism to study the effects of BME. Only two Zn2+-binding aminopeptidases have been identified inDictyosteliumto date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development ofDictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation inDictyosteliumlikely through inhibition of PsaA.


Sign in / Sign up

Export Citation Format

Share Document