scholarly journals Global and Targeted Lipid Analysis ofGemmata obscuriglobusReveals the Presence of Lipopolysaccharide, a Signature of the Classical Gram-Negative Outer Membrane

2015 ◽  
Vol 198 (2) ◽  
pp. 221-236 ◽  
Author(s):  
Rajendra Mahat ◽  
Corrine Seebart ◽  
Franco Basile ◽  
Naomi L. Ward

ABSTRACTPlanctomycete bacteria possess many unusual cellular properties, contributing to a cell plan long considered to be unique among the bacteria. However, data from recent studies are more consistent with a modified Gram-negative cell plan. A key feature of the Gram-negative plan is the presence of an outer membrane (OM), for which lipopolysaccharide (LPS) is a signature molecule. Despite genomic evidence for an OM in planctomycetes, no biochemical verification has been reported. We attempted to detect and characterize LPS in the planctomyceteGemmata obscuriglobus. We obtained direct evidence for LPS and lipid A using electrophoresis and differential staining. Gas chromatography-mass spectrometry (GC-MS) compositional analysis of LPS extracts identified eight different 3-hydroxy fatty acids (3-HOFAs), 2-keto 3-deoxy-d-manno-octulosonic acid (Kdo), glucosamine, and hexose and heptose sugars, a chemical profile unique to Gram-negative LPS. Combined with molecular/structural information collected from matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS analysis of putative intact lipid A, these data led us to propose a heterogeneous hexa-acylated lipid A structure (multiple-lipid A species). We also confirmed previous reports ofG. obscuriglobuswhole-cell fatty acid (FA) and sterol compositions and detected a novel polyunsaturated FA (PUFA). Our confirmation of LPS, and by implication an OM, inG. obscuriglobusraises the possibility that other planctomycetes possess an OM. The pursuit of this question, together with studies of the structural connections between planctomycete LPS and peptidoglycans, will shed more light on what appears to be a planctomycete variation on the Gram-negative cell plan.IMPORTANCEBacterial species are classified as Gram positive or negative based on their cell envelope structure. For 25 years, the envelope of planctomycete bacteria has been considered a unique exception, as it lacks peptidoglycan and an outer membrane (OM). However, the very recent detection of peptidoglycan in planctomycete species has provided evidence for a more conventional cell wall and raised questions about other elements of the cell envelope. Here, we report direct evidence of lipopolysaccharide in the planctomyceteG. obscuriglobus, suggesting the presence of an OM and supporting the proposal that the planctomycete cell envelope is an extension of the canonical Gram-negative plan. This interpretation features a convoluted cytoplasmic membrane and expanded periplasmic space, the functions of which provide an intriguing avenue for future investigation.

2021 ◽  
Vol 118 (15) ◽  
pp. e2018329118
Author(s):  
Martin V. Douglass ◽  
François Cléon ◽  
M. Stephen Trent

In Escherichia coli, cardiolipin (CL) is the least abundant of the three major glycerophospholipids in the gram-negative cell envelope. However, E. coli harbors three distinct enzymes that synthesize CL: ClsA, ClsB, and ClsC. This redundancy suggests that CL is essential for bacterial fitness, yet CL-deficient bacteria are viable. Although multiple CL–protein interactions have been identified, the role of CL still remains unclear. To identify genes that impact fitness in the absence of CL, we analyzed high-density transposon (Tn) mutant libraries in combinatorial CL synthase mutant backgrounds. We found LpxM, which is the last enzyme in lipid A biosynthesis, the membrane anchor of lipopolysaccharide (LPS), to be critical for viability in the absence of clsA. Here, we demonstrate that CL produced by ClsA enhances LPS transport. Suppressors of clsA and lpxM essentiality were identified in msbA, a gene that encodes the indispensable LPS ABC transporter. Depletion of ClsA in ∆lpxM mutants increased accumulation of LPS in the inner membrane, demonstrating that the synthetic lethal phenotype arises from improper LPS transport. Additionally, overexpression of ClsA alleviated ΔlpxM defects associated with impaired outer membrane asymmetry. Mutations that lower LPS levels, such as a YejM truncation or alteration in the fatty acid pool, were sufficient in overcoming the synthetically lethal ΔclsA ΔlpxM phenotype. Our results support a model in which CL aids in the transportation of LPS, a unique glycolipid, and adds to the growing repertoire of CL–protein interactions important for bacterial transport systems.


2019 ◽  
Vol 116 (35) ◽  
pp. 17147-17155 ◽  
Author(s):  
Matthew J. Powers ◽  
M. Stephen Trent

This perspective addresses recent advances in lipid transport across the Gram-negative inner and outer membranes. While we include a summary of previously existing literature regarding this topic, we focus on the maintenance of lipid asymmetry (Mla) pathway. Discovered in 2009 by the Silhavy group [J. C. Malinverni, T. J. Silhavy, Proc. Natl. Acad. Sci. U.S.A. 106, 8009–8014 (2009)], Mla has become increasingly appreciated for its role in bacterial cell envelope physiology. Through the work of many, we have gained an increasingly mechanistic understanding of the function of Mla via genetic, biochemical, and structural methods. Despite this, there is a degree of controversy surrounding the directionality in which Mla transports lipids. While the initial discovery and subsequent studies have posited that it mediated retrograde lipid transport (removing glycerophospholipids from the outer membrane and returning them to the inner membrane), others have asserted the opposite. This Perspective aims to lay out the evidence in an unbiased, yet critical, manner for Mla-mediated transport in addition to postulation of mechanisms for anterograde lipid transport from the inner to outer membranes.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Amy N. Jacobson ◽  
Biswa P. Choudhury ◽  
Michael A. Fischbach

ABSTRACTLipopolysaccharide (LPS), a cell-associated glycolipid that makes up the outer leaflet of the outer membrane of Gram-negative bacteria, is a canonical mediator of microbe-host interactions. The most prevalent Gram-negative gut bacterial taxon,Bacteroides, makes up around 50% of the cells in a typical Western gut; these cells harbor ~300 mg of LPS, making it one of the highest-abundance molecules in the intestine. As a starting point for understanding the biological function ofBacteroidesLPS, we have identified genes inBacteroides thetaiotaomicronVPI 5482 involved in the biosynthesis of its lipid A core and glycan, generated mutants that elaborate altered forms of LPS, and used matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry to interrogate the molecular features of these variants. We demonstrate,inter alia, that the glycan does not appear to have a repeating unit, and so this strain produces lipooligosaccharide (LOS) rather than LPS. This result contrasts withBacteroides vulgatusATCC 8482, which by SDS-PAGE analysis appears to produce LPS with a repeating unit. Additionally, our identification of theB. thetaiotaomicronLOS oligosaccharide gene cluster allowed us to identify similar clusters in otherBacteroidesspecies. Our work lays the foundation for developing a structure-function relationship forBacteroidesLPS/LOS in the context of host colonization.IMPORTANCEMuch is known about the bacterial species and genes that make up the human microbiome, but remarkably little is known about the molecular mechanisms through which the microbiota influences host biology. A well-known mechanism by which bacteria influence the host centers around lipopolysaccharide (LPS), a component of the Gram-negative bacterial outer membrane. Pathogen-derived LPS is a potent ligand for host receptor Toll-like receptor 4, which plays an important role in sensing bacteria as part of the innate immune response. Puzzlingly, the most common genus of human gut bacteria,Bacteroides, produces LPS but does not elicit a potent proinflammatory response. Previous work showing thatBacteroidesLPS differs structurally from pathogen-derived LPS suggested the outlines of an explanation. Here, we take the next step, elucidating the biosynthetic pathway forBacteroidesLPS and generating mutants in the process that will be of great use in understanding how this molecule modulates the host immune response.


2018 ◽  
Vol 10 (464) ◽  
pp. eaal0033 ◽  
Author(s):  
Ahsan R. Akram ◽  
Sunay V. Chankeshwara ◽  
Emma Scholefield ◽  
Tashfeen Aslam ◽  
Neil McDonald ◽  
...  

Respiratory infections in mechanically ventilated patients caused by Gram-negative bacteria are a major cause of morbidity. Rapid and unequivocal determination of the presence, localization, and abundance of bacteria is critical for positive resolution of the infections and could be used for patient stratification and for monitoring treatment efficacy. Here, we developed an in situ approach to visualize Gram-negative bacterial species and cellular infiltrates in distal human lungs in real time. We used optical endomicroscopy to visualize a water-soluble optical imaging probe based on the antimicrobial peptide polymyxin conjugated to an environmentally sensitive fluorophore. The probe was chemically stable and nontoxic and, after in-human intrapulmonary microdosing, enabled the specific detection of Gram-negative bacteria in distal human airways and alveoli within minutes. The results suggest that pulmonary molecular imaging using a topically administered fluorescent probe targeting bacterial lipid A is safe and practical, enabling rapid in situ identification of Gram-negative bacteria in humans.


2021 ◽  
Author(s):  
Alexandria B. Purcell ◽  
Bradley J. Voss ◽  
M. Stephen Trent

Gram-negative bacteria utilize glycerophospholipids (GPLs) as phospho-form donors to modify various surface structures. These modifications play important roles in bacterial fitness in diverse environments influencing cell motility, recognition by the host during infection, and antimicrobial resistance. A well-known example is the modification of the lipid A component of lipopolysaccharide by the phosphoethanolamine (pEtN) transferase EptA that utilizes phosphatidyethanoalmine (PE) as the phospho-form donor. Addition of pEtN to lipid A promotes resistance to cationic antimicrobial peptides (CAMPs), including the polymyxin antibiotics like colistin. A consequence of pEtN modification is the production of diacylglycerol (DAG) that must be recycled back into GPL synthesis via the diacylglycerol kinase A (DgkA). DgkA phosphorylates DAG forming phosphatidic acid, the precursor for GPL synthesis. Here we report that deletion of dgkA in polymyxin-resistant E. coli results in a severe reduction of pEtN modification and loss of antibiotic resistance. We demonstrate that inhibition of EptA is regulated post-transcriptionally and is not due to EptA degradation during DAG accumulation. We also show that the inhibition of lipid A modification by DAG is a conserved feature of different Gram-negative pEtN transferases. Altogether, our data suggests that inhibition of EptA activity during DAG accumulation likely prevents disruption of GPL synthesis helping to maintain cell envelope homeostasis.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Nicole P. Giordano ◽  
Melina B. Cian ◽  
Zachary D. Dalebroux

ABSTRACT The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM’s ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.


2005 ◽  
Vol 187 (18) ◽  
pp. 6599-6600 ◽  
Author(s):  
Li Tan ◽  
Creg Darby

ABSTRACT Lipopolysaccharide (LPS) is the major outer membrane component of gram-negative bacteria. The minimal LPS structure for viability of Escherichia coli and Salmonella enterica serovar Typhimurium is lipid A glycosylated with 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Here we show that another member of the Enterobacteriaceae, Yersinia pestis, can survive without Kdo in its LPS.


2008 ◽  
Vol 190 (6) ◽  
pp. 2065-2074 ◽  
Author(s):  
Mary E. Laubacher ◽  
Sarah E. Ades

ABSTRACTGram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identifyEscherichia colistress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance ofE. colito β-lactam antibiotics.


1996 ◽  
Vol 19 (3) ◽  
pp. 643-645 ◽  
Author(s):  
Andréa Pimenta ◽  
Mark Blight ◽  
David Clarke ◽  
I. Barry Holland

Sign in / Sign up

Export Citation Format

Share Document