scholarly journals SoxRS-Regulated Expression and Genetic Analysis of the yggX Gene of Escherichia coli

2003 ◽  
Vol 185 (22) ◽  
pp. 6624-6632 ◽  
Author(s):  
Pablo J. Pomposiello ◽  
Anastasia Koutsolioutsou ◽  
Daniel Carrasco ◽  
Bruce Demple

ABSTRACT Genomic studies with bacteria have identified redox-responsive genes without known roles in counteracting oxidative damage. Previous transcriptional profiling showed that expression of one such gene, yggX, was activated by superoxide stress in Escherichia coli. Here we show that this activation could be mimicked by artificial expression of the regulatory protein SoxS. Northern analysis confirmed the transcriptional activation of yggX by oxidative stress or SoxS expression but not in response to the related MarA or Rob proteins. Northern analysis showed that mltC, which codes for a peptidoglycan hydrolase and is positioned immediately downstream of yggX, was also regulated by oxidative stress or ectopic expression of SoxS. Purified SoxS protein bound to the predicted yggX promoter region, between positions 223 and 163 upstream from the yggX translational start site. Within this region, a 20-bp sequence was found to be necessary for oxidative stress-mediated activation of yggX transcription. A yggX deletion strain was hypersensitive to the redox-cycling agent paraquat, and a plasmid expressing YggX complemented the sensitivity of the deletion strain. Under exposure to paraquat, the yggX deletion strain showed a deficiency in aconitase activity compared to the isogenic wild-type strain, while expression of YggX from a multicopy plasmid increased the aconitase levels above those of the wild-type strain. These results demonstrate the direct regulation of the yggX gene by the redox-sensing SoxRS system and provide further evidence for the involvement of yggX in protection of iron-sulfur proteins against oxidative damage.

2005 ◽  
Vol 71 (5) ◽  
pp. 2762-2765 ◽  
Author(s):  
SunYoung Kim ◽  
Motomu Nishioka ◽  
Shuhei Hayashi ◽  
Hiroyuki Honda ◽  
Takeshi Kobayashi ◽  
...  

ABSTRACT DNA microarray analysis showed that yfiD, yggB, and yggE genes were up-regulated when superoxide dismutase (SOD)-deficient Escherichia coli IM303 (I4) was cultivated under the oxidative stress generated by photoexcited TiO2, and pYFD, pYGB, and pYGE were constructed by inserting the respective genes into a pUC 19 vector. The content of reactive oxygen species (ROS) in IM303 (I4) cells carrying pYGE was reduced to 31% of ROS content in the control cells with pUC 19. In the culture of wild-type strain, E. coli MM294, in the medium with paraquat (10 μmol/l), maximum specific growth rate of the cells with pYGE was about five times higher than that of the control cells, with a decreased ROS content in the former cells. The introduction of pYGE also suppressed the occurrence of the cells with altered amino acid requirement in the culture of MM294 cells with paraquat.


2014 ◽  
Vol 82 (12) ◽  
pp. 5056-5068 ◽  
Author(s):  
Gaëlle Porcheron ◽  
Rima Habib ◽  
Sébastien Houle ◽  
Mélissa Caza ◽  
François Lépine ◽  
...  

ABSTRACTInEscherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpathogenicE. colistrain, their impact on the production of virulence-associated factors is still unknown for a pathogenicE. colistrain. We thus investigated the roles of RyhB and Fur in iron homeostasis and virulence of the uropathogenicE. coli(UPEC) strain CFT073. In a murine model of urinary tract infection (UTI), deletion offuralone did not attenuate virulence, whereas a ΔryhBmutant and a ΔfurΔryhBdouble mutant showed significantly reduced bladder colonization. The Δfurmutant was more sensitive to oxidative stress and produced more of the siderophores enterobactin, salmochelins, and aerobactin than the wild-type strain. In contrast, while RyhB was not implicated in oxidative stress resistance, the ΔryhBmutant produced lower levels of siderophores. This decrease was correlated with the downregulation ofshiA(encoding a transporter of shikimate, a precursor of enterobactin and salmochelin biosynthesis) andiucD(involved in aerobactin biosynthesis) in this mutant grown in minimal medium or in human urine.iucDwas also downregulated in bladders infected with the ΔryhBmutant compared to those infected with the wild-type strain. Our results thus demonstrate that the sRNA RyhB is involved in production of iron acquisition systems and colonization of the urinary tract by pathogenicE. coli.


2002 ◽  
Vol 184 (4) ◽  
pp. 1065-1077 ◽  
Author(s):  
Thomas G. Duthy ◽  
Paul A. Manning ◽  
Michael W. Heuzenroeder

ABSTRACT This study investigated the role of three genes comprising part of the operon which encodes CS5 pili from enterotoxigenic Escherichia coli. In-frame gene deletions were constructed, and the effects on biogenesis of the pili were examined. A deletion in csfB abolished CsfA major subunit accumulation in the periplasm, which could be restored by trans-complementation with a complete copy of the csfB gene. Localization studies using an antibody against CsfB showed that this protein was periplasmically located, and thus CsfB is likely to function as the specific chaperone for CsfA. An in-frame deletion mutation in the csfE gene resulted in pili approximately three times longer than those of the wild-type strain, thereby indicating a role for CsfE in pilus length regulation. Localization studies using an antibody generated against CsfE showed low-level CsfE accumulation in the outer membranes. Modulation of csfE expression in trans did not reduce the mean length of the pilus below that of the wild type, which indicated that CsfE is not rate-limiting for termination of pilus assembly. Interestingly, a deletion in the csfF gene also resulted in an elongated pilus morphology identical to that of the csfE deletion strain. However, unlike CsfE, CsfF was shown to be rate-limiting for termination of assembly, since overexpression of CsfF in a csfF deletion strain resulted in a significant decrease in the mean length of the pilus compared to that of the wild type. When the same construct was introduced into the wild-type strain, pilus expression was abolished. Since CsfF bears significant homology to the proposed CsfB chaperone, CsfF was predicted to act as the specific chaperone for CsfE. A double deletion in the csfB and csfF genes was shown to abolish the periplasmic accumulation of both CsfA and CsfD pilins, which could be restored individually only when the strain was trans-complemented with a wild-type copy of csfB or csfF, respectively. Therefore, CsfF may chaperone not only CsfE but also CsfD. A model for CS5 biogenesis is also proposed based on these and previous observations.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


1985 ◽  
Vol 229 (2) ◽  
pp. 453-458 ◽  
Author(s):  
M Okada ◽  
S Natori

When Escherichia coli was treated with sarcotoxin I, a potent bactericidal protein of Sarcophaga peregrina (fleshfly), K+ inside of the cells leaked out rapidly and the ATP pool of the cells rapidly decreased. These results suggested that the bactericidal effect of sarcotoxin I was due to its ionophore activity, and that it blocked the generation of ATP by inhibiting formation of the proton gradient essential for oxidative phosphorylation. This was confirmed by use of an uncA mutant, which was much less susceptible than the wild-type strain to sarcotoxin I under fixed ionic conditions.


2002 ◽  
Vol 68 (8) ◽  
pp. 4107-4110 ◽  
Author(s):  
Tomohiro Morohoshi ◽  
Tatsuya Maruo ◽  
Yoko Shirai ◽  
Junichi Kato ◽  
Tsukasa Ikeda ◽  
...  

ABSTRACT The biological process for phosphate (Pi) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the Pi regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more Pi from the medium than the wild-type strain removed.


2013 ◽  
Vol 81 (9) ◽  
pp. 3472-3478 ◽  
Author(s):  
Haiqing Sheng ◽  
Y. N. Nguyen ◽  
Carolyn J. Hovde ◽  
Vanessa Sperandio

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) causes hemorrhagic colitis and life-threatening complications. The main reservoirs for EHEC are healthy ruminants. We reported that SdiA senses acyl homoserine lactones (AHLs) in the bovine rumen to activate expression of the glutamate acid resistance (gad) genes priming EHEC's acid resistance before they pass into the acidic abomasum. Conversely, SdiA represses expression of the locus of enterocyte effacement (LEE) genes, whose expression is not required for bacterial survival in the rumen but is necessary for efficient colonization at the rectoanal junction (RAJ) mucosa. Our previous studies show that SdiA-dependent regulation was necessary for efficient EHEC colonization of cattle fed a grain diet. Here, we compared the SdiA role in EHEC colonization of cattle fed a forage hay diet. We detected AHLs in the rumen of cattle fed a hay diet, and these AHLs activatedgadgene expression in an SdiA-dependent manner. The rumen fluid and fecal samples from hay-fed cattle were near neutrality, while the same digesta samples from grain-fed animals were acidic. Cattle fed either grain or hay and challenged with EHEC orally carried the bacteria similarly. EHEC was cleared from the rumen within days and from the RAJ mucosa after approximately one month. In competition trials, where animals were challenged with both wild-type and SdiA deletion mutant bacteria, diet did not affect the outcome that the wild-type strain was better able to persist and colonize. However, the wild-type strain had a greater advantage over the SdiA deletion mutant at the RAJ mucosa among cattle fed the grain diet.


2020 ◽  
Vol 8 (9) ◽  
pp. 1444
Author(s):  
Mitzi de la Cruz ◽  
Elisa A. Ramírez ◽  
Juan-Carlos Sigala ◽  
José Utrilla ◽  
Alvaro R. Lara

The design of optimal cell factories requires engineering resource allocation for maximizing product synthesis. A recently developed method to maximize the saving in cell resources released 0.5% of the proteome of Escherichia coli by deleting only three transcription factors. We assessed the capacity for plasmid DNA (pDNA) production in the proteome-reduced strain in a mineral medium, lysogeny, and terrific broths. In all three cases, the pDNA yield from biomass was between 33 and 53% higher in the proteome-reduced than in its wild type strain. When cultured in fed-batch mode in shake-flask, the proteome-reduced strain produced 74.8 mg L−1 pDNA, which was four times greater than its wild-type strain. Nevertheless, the pDNA supercoiled fraction was less than 60% in all cases. Deletion of recA increased the pDNA yields in the wild type, but not in the proteome-reduced strain. Furthermore, recA mutants produced a higher fraction of supercoiled pDNA, compared to their parents. These results show that the novel proteome reduction approach is a promising starting point for the design of improved pDNA production hosts.


1999 ◽  
Vol 65 (7) ◽  
pp. 3100-3107 ◽  
Author(s):  
S. Guillouet ◽  
A. A. Rodal ◽  
G.-H. An ◽  
P. A. Lessard ◽  
A. J. Sinskey

ABSTRACT The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by theilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and atdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Rui Yao ◽  
Pei Zhou ◽  
Chengjin Wu ◽  
Liming Liu ◽  
Jing Wu

ABSTRACT In Saccharomyces cerevisiae, Y family DNA polymerase Rev1 is involved in the repair of DNA damage by translesion DNA synthesis (TLS). In the current study, to elucidate the role of Rev1 in oxidative stress-induced DNA damage in S. cerevisiae, REV1 was deleted and overexpressed; transcriptome analysis of these mutants along with the wild-type strain was performed to screen potential genes that could be associated with REV1 during response to DNA damage. When the yeast cells were treated with 2 mM H2O2, the deletion of REV1 resulted in a 1.5- and 2.8-fold decrease in the survival rate and mutation frequency, respectively, whereas overexpression of REV1 increased the survival rate and mutation frequency by 1.1- and 2.9-fold, respectively, compared to the survival rate and mutation frequency of the wild-type strain. Transcriptome and phenotypic analyses identified that Sml1 aggravated oxidative stress in the yeast cells by inhibiting the activity of Rev1. This inhibition was due to the physical interaction between the BRCA1 C terminus (BRCT) domain of Rev1 and amino acid residues 36 to 70 of Sml1; the cell survival rate and mutation frequency increased by 1.8- and 3.1-fold, respectively, when this interaction was blocked. We also found that Sml1 inhibited Rev1 phosphorylation under oxidative stress and that deletion of SML1 increased the phosphorylation of Rev1 by 46%, whereas overexpression of SML1 reduced phosphorylation of Rev1. Overall, these findings demonstrate that Sml1 could be a novel regulator that mediates Rev1 dephosphorylation to inhibit its activity during oxidative stress. IMPORTANCE Rev1 was critical for cell growth in S. cerevisiae, and the deletion of REV1 caused a severe growth defect in cells exposed to oxidative stress (2 mM H2O2). Furthermore, we found that Sml1 physically interacted with Rev1 and inhibited Rev1 phosphorylation, thereby inhibiting Rev1 DNA antioxidant activity. These findings indicate that Sml1 could be a novel regulator for Rev1 in response to DNA damage by oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document