scholarly journals Bovine Non-O157 Shiga Toxin 2-Containing Escherichia coli Isolates Commonly Possess stx2-EDL933 and/or stx2vhb Subtypes

2003 ◽  
Vol 41 (6) ◽  
pp. 2716-2722 ◽  
Author(s):  
K. N. Brett ◽  
M. A. Hornitzky ◽  
K. A. Bettelheim ◽  
M. J. Walker ◽  
S. P. Djordjevic
2010 ◽  
Vol 73 (4) ◽  
pp. 649-656 ◽  
Author(s):  
M. O. MASANA ◽  
G. A. LEOTTA ◽  
L. L. DEL CASTILLO ◽  
B. A. D'ASTEK ◽  
P. M. PALLADINO ◽  
...  

In Argentina, Escherichia coli O157:H7/NM (STEC O157) is the prevalent serotype associated with hemolytic uremic syndrome (HUS), which is endemic in the country with more than 400 cases per year. In order to estimate the prevalence and characteristics of STEC O157 in beef cattle at slaughter, a survey of 1,622 fecal and carcass samples was conducted in nine beef exporting abattoirs from November 2006 to April 2008. A total of 54 samples were found positive for STEC O157, with an average prevalence of 4.1% in fecal content and 2.6% in carcasses. Calves and heifers presented higher percentages of prevalence in feces, 10.5 and 8.5%, respectively. All STEC O157 isolates harbored stx2 (Shiga toxin 2), eae (intimin), ehxA (enterohemolysin), and fliCH7 (H7 flagellin) genes, while stx1 (Shiga toxin 1) was present in 16.7% of the strains. The prevalent (56%) stx genotype identified was stx2 combined with variant stx2c (vh-a), the combination of which is also prevalent (>90%) in STEC O157 post–enteric HUS cases in Argentina. The clonal relatedness of STEC O157 strains was established by phage typing and pulsed-field gel electrophoresis (PFGE). The 54 STEC isolates were categorized into 12 different phage types and in 29 XbaI-PFGE patterns distributed in 27 different lots. STEC O157 strains isolated from 5 of 21 carcasses were identical by PFGE (100% similarity) to strains of the fecal content of the same or a contiguous bovine in the lot. Five phage type–PFGE–stx profiles of 10 strains isolated in this study matched with the profiles of the strains recovered from 18 of 122 HUS cases that occurred in the same period.


2019 ◽  
Vol 11 ◽  
pp. 27-36 ◽  
Author(s):  
Clifton K. Fagerquist ◽  
William J. Zaragoza ◽  
Bertram G. Lee ◽  
Jaszemyn C. Yambao ◽  
Beatriz Quiñones

2011 ◽  
Vol 55 (4) ◽  
pp. 231-238 ◽  
Author(s):  
José Luis Baronetti ◽  
Natalia Angel Villegas ◽  
María Gabriela Paraje ◽  
Inés Albesa

2008 ◽  
Vol 75 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Cristina García-Aljaro ◽  
Maite Muniesa ◽  
Juan Jofre ◽  
Anicet R. Blanch

ABSTRACT Shiga toxin 2 (stx 2) gene-carrying bacteriophages have been shown to convert Escherichia coli strains to Shiga toxin-producing Escherichia coli (STEC). In this study, 79 E. coli strains belonging to 35 serotypes isolated from wastewaters of both human and animal origin were examined for the presence of stx2 -carrying bacteriophages in their genomes. The lytic cycle of the bacteriophages was induced by mitomycin, and the bacteriophage fraction was isolated and used for morphological and genetic characterization. The induced bacteriophages showed morphological diversity, as well as restriction fragment length polymorphism variation, in the different strains belonging to different serotypes. The ability to infect new hosts was highly variable, although most of the induced phages infected Shigella sonnei host strain 866. In summary, in spite of carrying either the same or different stx 2 variants and in spite of the fact that they were isolated from strains belonging to the same or different serotypes, the induced bacteriophages were highly variable. The high level of diversity and the great infectious capacity of these phages could enhance the spread of the stx 2 gene and variants of this gene among different bacterial populations in environments to which humans may be exposed.


Gene ◽  
2003 ◽  
Vol 309 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Toshio Sato ◽  
Takeshi Shimizu ◽  
Masahisa Watarai ◽  
Midori Kobayashi ◽  
Shigeyuki Kano ◽  
...  

2008 ◽  
Vol 153 (2) ◽  
pp. 297-306 ◽  
Author(s):  
R. J. F. Brando ◽  
E. Miliwebsky ◽  
L. Bentancor ◽  
N. Deza ◽  
A. Baschkier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document