scholarly journals Mixed Infections of Pepino Mosaic Virus Strains Modulate the Evolutionary Dynamics of this Emergent Virus

2009 ◽  
Vol 83 (23) ◽  
pp. 12378-12387 ◽  
Author(s):  
P. Gómez ◽  
R. N. Sempere ◽  
S. F. Elena ◽  
M. A. Aranda

ABSTRACT Pepino mosaic virus (PepMV) is an emerging pathogen that causes severe economic losses in tomato crops (Solanum lycopersicum L.) in the Northern hemisphere, despite persistent attempts of control. In fact, it is considered one of the most significant viral diseases for tomato production worldwide, and it may constitute a good model for the analysis of virus emergence in crops. We have combined a population genetics approach with an analysis of in planta properties of virus strains to explain an observed epidemiological pattern. Hybridization analysis showed that PepMV populations are composed of isolates of two types (PepMV-CH2 and PepMV-EU) that cocirculate. The CH2 type isolates are predominant; however, EU isolates have not been displaced but persist mainly in mixed infections. Two molecularly cloned isolates belonging to each type have been used to examine the dynamics of in planta single infections and coinfection, revealing that the CH2 type has a higher fitness than the EU type. Coinfections expand the range of susceptible hosts, and coinfected plants remain symptomless several weeks after infection, so a potentially important problem for disease prevention and management. These results provide an explanation of the observed epidemiological pattern in terms of genetic and ecological interactions among the different viral strains. Thus, mixed infections appear to be contributing to shaping the genetic structure and dynamics of PepMV populations.

2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Alcaide ◽  
Miguel A. Aranda

Pepino mosaic virus (PepMV) has become a pandemic virus in tomato crops, causing important economic losses worldwide. In Spain, isolates of the EU and CH2 strains co-circulate, with PepMV-EU predominantly found in mixed infections. Simultaneous in planta mixed infections result in an asymmetric antagonism against PepMV-CH2, but the outcome of over-infections has never been tested. PepMV-EU and PepMV-CH2 time-lagged inoculations were performed, and viral accumulation was measured 10 days after challenge inoculation. PepMV-EU had a protective effect over PepMV-CH2; in contrast, the accumulation of PepMV-EU increased in plants pre-inoculated with PepMV-CH2 as compared to single infections. We also studied the effect of the type of infection on viral transmission. Independently of the nature of the infection (single or mixed), we observed a strong positive correlation between virus accumulation in the source plant and transmission, excluding mixed infection effects different than modulating viral accumulation. Finally, in order to determine the genetic variability of PepMV strains in single and mixed infections, a 430 nucleotide region was RT-PCR amplified from samples from a serial passages experiment and deep-sequenced. No significant differences were found in the number of nucleotide substitutions between single and mixed infections for PepMV-EU; in contrast, significant differences were found for PepMV-CH2, which was more variable in single than in mixed infections. Comparing PepMV-EU with PepMV-CH2, a higher nucleotide diversity was found for PepMV-CH2. Collectively, our data strongly suggest that PepMV mixed infections can impact the virus epidemiology by modulating in planta virus strain accumulation and diversification.


2020 ◽  
Vol 110 (1) ◽  
pp. 49-57 ◽  
Author(s):  
C. Alcaide ◽  
M. P. Rabadán ◽  
M. Juárez ◽  
P. Gómez

Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus–virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 879 ◽  
Author(s):  
Chen Klap ◽  
Neta Luria ◽  
Elisheva Smith ◽  
Lior Hadad ◽  
Elena Bakelman ◽  
...  

The tobamovirus tomato brown rugose fruit virus (ToBRFV), a major threat to tomato production worldwide, has recently been documented in mixed infections with the potexvirus pepino mosaic virus (PepMV) CH2 strain in traded tomatoes in Israel. A study of greenhouse tomato plants in Israel revealed severe new viral disease symptoms including open unripe fruits and yellow patched leaves. PepMV was only detected in mixed infections with ToBRFV in all 104 tested sites, using serological and molecular analyses. Six PepMV isolates were identified, all had predicted amino acids characteristic of CH2 mild strains excluding an isoleucine at amino acid position 995 of the replicase. High-throughput sequencing of viral RNA extracted from four selected symptomatic plants showed solely the ToBRFV and PepMV, with total aligned read ratios of 40.61% and 11.73%, respectively, indicating prevalence of the viruses. Analyses of interactions between the co-infecting viruses by sequential and mixed viral inoculations of tomato plants, at various temperatures, showed a prominent increase in PepMV titers in ToBRFV pre-inoculated plants and in mixed-infected plants at 18–25 °C, compared to PepMV-single inoculations, as analyzed by Western blot and quantitative RT-PCR tests. These results suggest that Israeli mild PepMV isolate infections, preceded by ToBRFV, could induce symptoms characteristic of PepMV aggressive strains.


2018 ◽  
Vol 19 (12) ◽  
pp. 3747
Author(s):  
Matthaios Mathioudakis ◽  
Souheyla Khechmar ◽  
Carolyn Owen ◽  
Vicente Medina ◽  
Karima Ben Mansour ◽  
...  

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27–35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


2020 ◽  
Vol 18 (4) ◽  
pp. e10SC05
Author(s):  
Ivana Stankovic ◽  
Ana Vucurovic ◽  
Katarina Zecevic ◽  
Branka Petrovic ◽  
Danijela Ristic ◽  
...  

Aim of study: To report the occurrence of Pepino mosaic virus (PepMV) on tomato in Serbia and to genetically characterize Serbian PepMV isolates.Area of study: Tomato samples showing virus-like symptoms were collected in the Bogojevce locality (Jablanica District, Serbia).Material and methods: Collected tomato samples were assayed by DAS-ELISA using antisera against eight economically important or quarantine tomato viruses. Three selected isolates of naturally infected tomato plants were mechanically transmitted to tomato ‘Novosadski jabučar’ seedlings. For confirmation of PepMV infection, RT-PCR was performed using specific primers PepMV TGB F/PepMV UTR R. Maximum-likelihood phylogenetic tree was constructed with 47 complete CP gene sequences of PepMV to determine the genetic relationship of Serbian PepMV isolates with those from other parts of the world.Main results: The results of DAS-ELISA indicated the presence of PepMV in all tested samples. Mechanically inoculated ‘Novosadski jabučar’ seedlings expressed yellow spots and light and dark green patches, bubbling, and curled leaves. All tested tomato plants were RT-PCR positive for the presence of PepMV. The CP sequence analysis revealed that the Serbian PepMV isolates were completely identical among themselves and shared the highest nucleotide identity of 95.1% (99.2% aa identity) with isolate from Spain (FJ263341). Phylogenetic analysis showed clustering of the Serbian PepMV isolates into CH2 strain, but they formed separate subgroup within CH2 strain.Research highlights: This is the first data of the presence of PepMV in protected tomato production in Serbia. Considering increased incidence and rapid spread in Europe, the presence of PepMV on tomato could therefore represent serious threat to this valuable crop in Serbia.


2019 ◽  
Vol 267 ◽  
pp. 42-47 ◽  
Author(s):  
C. Gómez-Aix ◽  
C. Alcaide ◽  
P. Gómez ◽  
M.A. Aranda ◽  
M.A. Sánchez-Pina

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1701-1705 ◽  
Author(s):  
Kai-Shu Ling

In just a few years, Pepino mosaic virus (PepMV) has become a major threat to greenhouse tomato production around the world. Although tomato seed is suspected to spread the disease, its importance as an initial virus inoculum for PepMV has not been established. To determine the potential for seed transmission, a tomato seed lot highly contaminated with PepMV was used for large-scale seedling grow-out tests. None of 10,000 grow-out seedlings was infected as determined by symptom expression, enzyme-linked immunosorbent assay (ELISA), or infectivity assay on Nicotiana benthamiana. Even though PepMV was not seed transmitted on tomato, the virus was effectively transmitted to tomato and N. benthamiana seedlings through mechanical transmission with seed extract. To examine the exact location where PepMV particles accumulated on the tomato seed, seed coats and embryos were carefully isolated and tested separately by ELISA, real-time RT-PCR, and bioassay on N. benthamiana. PepMV was detected in the seed coat fraction in both immature and mature tomato seeds, but not in the embryo. However, in N. benthamiana, the virus was neither seedborne nor seed-transmitted. Because PepMV is seedborne in tomato, efficient mechanical transmission of PepMV from the virus-contaminated tomato seed to seedlings could initiate a disease epidemic in a new tomato growing area. Thus, it is important to plant certified tomato seed that has been tested free of PepMV.


2019 ◽  
Vol 13 (1) ◽  
pp. 18-28
Author(s):  
Amal Souiri ◽  
Mustapha Zemzami ◽  
Hayat Laatiris ◽  
Saaid Amzazi ◽  
Moulay M. Ennaji

Introduction: Throughout the past few years, Pepino Mosaic Virus (PepMV) has rapidly evolved from an emerging virus to endemic pathogen that causes significant losses in tomato crops worldwide. Reliable detection and molecular characterization are very important tools to support disease control. Cross-protection can also be an effective strategy, but the efficacy depends strongly on the genotype. The genetic composition of the PepMV population in Morocco has not yet been determined. Aims: The current study aims to genetically characterize twelve PepMV isolates (PepMV-MA), all from different Moroccan tomato production areas, by analyzing nucleotide sequences of a part of the RNA-dependent RNA polymerase (RdRp), Triple Gene Block (TGB) and Coat Protein (CP) genes. Results: The sequence analysis of the twelve PepMV-MA isolates shows minor nucleotide differences between them, which implies a homogenous population. The phylogenetic analysis, based on the comparison with the major genotypes, showed that Moroccan PepMV populations share a very high sequence identity, 98%, with the Chilean strain (CH2), while the shared identity with the European strains (EU) is only 85%. Interestingly, Moroccan isolates reveal specific single nucleotide polymorphisms, some of which lead to amino acids changes. These mutations have never been described before, suggesting distinct variants that may enhance aggressiveness and symptomatology. Conclusion: Our careful sequence analysis and genotype determination, which placing homogenous Moroccan PepMV strains into CH2 genotype, would be a prerequisite for deploying effective cross-protection strategies for controlling the pathogen in the field.


2016 ◽  
Vol 56 (4) ◽  
pp. 337-345 ◽  
Author(s):  
Julia Minicka ◽  
Beata Hasiów-Jaroszewska ◽  
Natasza Borodynko-Filas ◽  
Henryk Pospieszny ◽  
Inge Maria Hanssen

AbstractPepino mosaic virus (PepMV) has emerged as an important pathogen of greenhouse tomato crops and is currently distributed worldwide. Population genetic studies have revealed a shift in the dominant PepMV genotype from European (EU) to Chilean 2 (CH2) in North America and several European countries. New genetic variants are constantly being created by mutation and recombination events. Single nucleotide substitutions in different parts of the genome were found to affect on development of symptoms resulting in new pathotypes and accumulation of viral RNA. The variability of the PepMV population has a great impact on designing specific diagnostic tools and developing efficient and durable strategies of disease control. In this paper we review the current knowledge about the PepMV population, the evolutionary dynamics of this highly infective virus, methods for its detection and plant protection strategies.


2015 ◽  
Vol 143 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Dag-Ragnar Blystad ◽  
René van der Vlugt ◽  
Ana Alfaro-Fernández ◽  
María del Carmen Córdoba ◽  
Gábor Bese ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document