scholarly journals Kinetics of SARS-CoV-2 Specific and Neutralizing Antibodies over Seven Months after Symptom Onset in COVID-19 Patients

Author(s):  
Liguo Zhu ◽  
Xin Xu ◽  
Baoli Zhu ◽  
Xiling Guo ◽  
Ke Xu ◽  
...  

The long-term characteristics of anti-SARS-CoV-2 antibodies among COVID-19 patients remain largely unclear. Tracking the longevity of these antibodies can provide a forward-looking reference for monitoring COVID-19.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tiandan Xiang ◽  
Boyun Liang ◽  
Yaohui Fang ◽  
Sihong Lu ◽  
Sumeng Li ◽  
...  

Major advances have been made in understanding the dynamics of humoral immunity briefly after the acute coronavirus disease 2019 (COVID-19). However, knowledge concerning long-term kinetics of antibody responses in convalescent patients is limited. During a one-year period post symptom onset, we longitudinally collected 162 samples from 76 patients and quantified IgM and IgG antibodies recognizing the nucleocapsid (N) protein or the receptor binding domain (RBD) of the spike protein (S). After one year, approximately 90% of recovered patients still had detectable SARS-CoV-2-specific IgG antibodies recognizing N and RBD-S. Intriguingly, neutralizing activity was only detectable in ~43% of patients. When neutralization tests against the E484K-mutated variant of concern (VOC) B.1.351 (initially identified in South Africa) were performed among patients who neutralize the original virus, the capacity to neutralize was even further diminished to 22.6% of donors. Despite declining N- and S-specific IgG titers, a considerable fraction of recovered patients had detectable neutralizing activity one year after infection. However, neutralizing capacities, in particular against an E484K-mutated VOC were only detectable in a minority of patients one year after symptomatic COVID-19. Our findings shed light on the kinetics of long-term immune responses after natural SARS-CoV-2 infection and argue for vaccinations of individuals who experienced a natural infection to protect against emerging VOC.


Author(s):  
Etienne Brochot ◽  
Baptiste Demey ◽  
Antoine Touzé ◽  
Sandrine Belouzard ◽  
Jean Dubuisson ◽  
...  

SummaryObjectiveThe objective of this study was to monitor the anti-SARS-CoV-2 antibody response in infected patients.MethodsIn order to assess the time of seroconversion, we used 151 samples from 30 COVID-19 inpatients and monitored the detection kinetics of anti-S1, anti-S2, anti-RBD and anti-N antibodies with in-house ELISAs. We also monitored the presence of neutralizing antibodies in these samples as well as 25 asymptomatic carrier samples using retroviral particles pseudotyped with the spike of the SARS-CoV-2.ResultsWe observed that specific antibodies were detectable in all inpatients two weeks post-symptom onset. The detection of the SARS-CoV-2 Nucleocapsid and RBD was more sensitive than the detection of the S1 or S2 subunits. Neutralizing antibodies reached a plateau two weeks post-symptom onset and then declined in the majority of inpatients. Furthermore, neutralizing antibodies were undetectable in 56% of asymptomatic carriers.ConclusionsOur results raise questions concerning the role played by neutralizing antibodies in COVID-19 cure and protection against secondary infection. They also suggest that induction of neutralizing antibodies is not the only strategy to adopt for the development of a vaccine. Finally, they imply that anti-SARS-CoV-2 neutralizing antibodies should be titrated to optimize convalescent plasma therapy.HighlightsSpecific antibodies are detectable in 100% COVID-19 inpatients two weeks post-symptom onset.The detection of the SARS-CoV-2 Nucleocapsid and Receptor Binding Domain is more sensitive than the detection of the S1 or S2 subunits.Neutralizing antibodies reach a plateau two weeks post-symptom onset and then decline in the majority of inpatients.Neutralizing antibodies are undetectable in the majority of asymptomatic carriers.


2020 ◽  
Author(s):  
Louis Grandjean ◽  
Anja Saso ◽  
Arturo Torres Ortiz ◽  
Tanya Lam ◽  
James Hatcher ◽  
...  

AbstractBackgroundAntibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro. Similarly, animal challenge models suggest that neutralizing antibodies isolated from SARS-CoV-2 infected individuals prevent against disease upon re-exposure to the virus. Understanding the nature and duration of the antibody response following SARS-CoV-2 infection is therefore critically important.MethodsBetween April and October 2020 we undertook a prospective cohort study of 3555 healthcare workers in order to elucidate the duration and dynamics of antibody responses following infection with SARS-CoV-2. After a formal performance evaluation against 169 PCR confirmed cases and negative controls, the Meso-Scale Discovery assay was used to quantify in parallel, antibody titers to the SARS-CoV-2 nucleoprotein (N), spike (S) protein and the receptor-binding-domain (RBD) of the S-protein. All seropositive participants were followed up monthly for a maximum of 7 months; those participants that were symptomatic, with known dates of symptom-onset, seropositive by the MSD assay and who provided 2 or more monthly samples were included in the analysis. Survival analysis was used to determine the proportion of sero-reversion (switching from positive to negative) from the raw data. In order to predict long-term antibody dynamics, two hierarchical longitudinal Gamma models were implemented to provide predictions for the lower bound (continuous antibody decay to zero, “Gamma-decay”) and upper bound (decay-to-plateau due to long lived plasma cells, “Gamma-plateau”) long-term antibody titers.ResultsA total of 1163 samples were provided from 349 of 3555 recruited participants who were symptomatic, seropositive by the MSD assay, and were followed up with 2 or more monthly samples. At 200 days post symptom onset, 99% of participants had detectable S-antibody whereas only 75% of participants had detectable N-antibody. Even under our most pessimistic assumption of persistent negative exponential decay, the S-antibody was predicted to remain detectable in 95% of participants until 465 days [95% CI 370-575] after symptom onset. Under the Gamma-plateau model, the entire posterior distribution of S-antibody titers at plateau remained above the threshold for detection indefinitely. Surrogate neutralization assays demonstrated a strong positive correlation between antibody titers to the S-protein and blocking of the ACE-2 receptor in-vitro [R2=0.72, p<0.001]. By contrast, the N-antibody waned rapidly with a half-life of 60 days [95% CI 52-68].DiscussionThis study has demonstrated persistence of the spike antibody in 99% of participants at 200 days following SARS-CoV-2 symptoms and rapid decay of the nucleoprotein antibody. Diagnostic tests or studies that rely on the N-antibody as a measure of seroprevalence must be interpreted with caution. Our lowest bound prediction for duration of the spike antibody was 465 days and our upper bound predicted spike antibody to remain indefinitely in line with the long-term seropositivity reported for SARS-CoV infection. The long-term persistence of the S-antibody, together with the strong positive correlation between the S-antibody and viral surrogate neutralization in-vitro, has important implications for the duration of functional immunity following SARS-CoV-2 infection.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1077
Author(s):  
Evangelos Terpos ◽  
Vangelis Karalis ◽  
Ioannis Ntanasis-Stathopoulos ◽  
Maria Gavriatopoulou ◽  
Sentiljana Gumeni ◽  
...  

Elucidating long-term immunity following COVID-19 vaccination is essential for decision-making regarding booster shots. The aim of this study was to investigate the kinetics of neutralizing antibodies (Nabs) against SARS-CoV-2 up to six months after the second vaccination dose with the BNT162b2 mRNA vaccine. Nabs levels were measured on days 1 (before the first vaccine shot), 8, 22 (before the second shot), 36, 50, and 3 and 6 months after the second vaccination (NCT04743388). Three hundred and eight healthy individuals without malignant disease were included in this study. At six months, 2.59% of the participants had a Nabs value less than 30%, while 11.9% had Nabs values of less than 50%. Importantly, 58% of the subjects had Nabs values of more than 75%. Nabs were initially eliminated at a relatively slow rate, but after three months their elimination was 5.7 times higher. Older age was inversely associated with Nabs levels at all examined timepoints. Interestingly, a population modeling analysis estimated that half of the subjects will have Nabs values less than 73.8% and 64.6% at 9 and 12 months, respectively, post vaccination completion. In conclusion, we found a persistent but declining anti-SARS-CoV-2 humoral immunity at six months following full vaccination with BNT162b2 in healthy individuals, which was more pronounced among older persons. These data may inform the public health policies regarding the prioritization of booster vaccine shots.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


Author(s):  
Juan P. Wisnivesky ◽  
Kimberly Stone ◽  
Emilia Bagiella ◽  
Molly Doernberg ◽  
Damodara Rao Mendu ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 996
Author(s):  
Jenni Virtanen ◽  
Ruut Uusitalo ◽  
Essi M. Korhonen ◽  
Kirsi Aaltonen ◽  
Teemu Smura ◽  
...  

Increasing evidence suggests that some newly emerged SARS-CoV-2 variants of concern (VoCs) resist neutralization by antibodies elicited by the early-pandemic wild-type virus. We applied neutralization tests to paired recoveree sera (n = 38) using clinical isolates representing the first wave (D614G), VoC1, and VoC2 lineages (B.1.1.7 and B 1.351). Neutralizing antibodies inhibited contemporary and VoC1 lineages, whereas inhibition of VoC2 was reduced 8-fold, with 50% of sera failing to show neutralization. These results provide evidence for the increased potential of VoC2 to reinfect previously SARS-CoV-infected individuals. The kinetics of NAbs in different patients showed similar decline against all variants, with generally low initial anti-B.1.351 responses becoming undetectable, but with anti-B.1.1.7 NAbs remaining detectable (>20) for months after acute infection.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1942
Author(s):  
Evangelos Terpos ◽  
Ioannis P. Trougakos ◽  
Vangelis Karalis ◽  
Ioannis Ntanasis-Stathopoulos ◽  
Sentiljana Gumeni ◽  
...  

The aim of this study was to investigate the kinetics of neutralizing antibodies (NAbs) and anti-SARS-CoV-2 anti-S-RBD IgGs up to three months after the second vaccination dose with the BNT162b2 mRNA vaccine. NAbs and anti-S-RBD levels were measured on days 1 (before the first vaccine shot), 8, 22 (before the second shot), 36, 50, and three months after the second vaccination (D111) (NCT04743388). 283 health workers were included in this study. NAbs showed a rapid increase from D8 to D36 at a constant rate of about 3% per day and reached a median (SD) of 97.2% (4.7) at D36. From D36 to D50, a slight decrease in NAbs values was detected and it became more prominent between D50 and D111 when the rate of decline was determined at −0.11 per day. The median (SD) NAbs value at D111 was 92.7% (11.8). A similar pattern was also observed for anti-S-RBD antibodies. Anti-S-RBDs showed a steeper increase during D22–D36 and a lower decline rate during D36–D111. Prior COVID-19 infection and younger age were associated with superior antibody responses over time. In conclusion, we found a persistent but declining anti-SARS-CoV-2 humoral immunity at 3 months following full vaccination with BNT162b2 in healthy individuals.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 404 ◽  
Author(s):  
Daniel E. Speiser ◽  
Martin F. Bachmann

Vaccines are needed to protect from SARS-CoV-2, the virus causing COVID-19. Vaccines that induce large quantities of high affinity virus-neutralizing antibodies may optimally prevent infection and avoid unfavorable effects. Vaccination trials require precise clinical management, complemented with detailed evaluation of safety and immune responses. Here, we review the pros and cons of available vaccine platforms and options to accelerate vaccine development towards the safe immunization of the world’s population against SARS-CoV-2. Favorable vaccines, used in well-designed vaccination strategies, may be critical for limiting harm and promoting trust and a long-term return to normal public life and economy.


2016 ◽  
Vol 22 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Gábor Steinbach ◽  
Radek Kaňa

AbstractPhotosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (throughTime Controlleroffered by Olympus orExperiment Designeroffered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with theCell⊕Findersoftware was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) theCell⊕Findersoftware with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser.Cell⊕Findercan be downloaded fromhttp://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity inSynechocystissp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.


Sign in / Sign up

Export Citation Format

Share Document