scholarly journals Routine, Cost-Effective SARS-CoV-2 Surveillance Testing Using Pooled Saliva Limits Viral Spread on a Residential College Campus

Author(s):  
Nicole A. Vander Schaaf ◽  
Anthony J. Fund ◽  
Brianna V. Munnich ◽  
Alexi L. Zastrow ◽  
Erin E. Fund ◽  
...  

This study highlights the utility of routine testing for SARS-CoV-2 using pooled saliva while maintaining high sensitivity of detection (under 2,500 copies/ml) and rapid turnaround of high volume (up to 930 samples in 8 h by two technicians and one quantitative PCR [qPCR] machine). This pooled approach allowed us to test all residential students 1 to 2 times per week on our college campus during the spring of 2021 and flagged 83% of our semester positives.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ramesh Yelagandula ◽  
◽  
Aleksandr Bykov ◽  
Alexander Vogt ◽  
Robert Heinen ◽  
...  

AbstractThe COVID-19 pandemic has demonstrated the need for massively-parallel, cost-effective tests monitoring viral spread. Here we present SARSeq, saliva analysis by RNA sequencing, a method to detect SARS-CoV-2 and other respiratory viruses on tens of thousands of samples in parallel. SARSeq relies on next generation sequencing of multiple amplicons generated in a multiplexed RT-PCR reaction. Two-dimensional, unique dual indexing, using four indices per sample, enables unambiguous and scalable assignment of reads to individual samples. We calibrate SARSeq on SARS-CoV-2 synthetic RNA, virions, and hundreds of human samples of various types. Robustness and sensitivity were virtually identical to quantitative RT-PCR. Double-blinded benchmarking to gold standard quantitative-RT-PCR performed by human diagnostics laboratories confirms this high sensitivity. SARSeq can be used to detect Influenza A and B viruses and human rhinovirus in parallel, and can be expanded for detection of other pathogens. Thus, SARSeq is ideally suited for differential diagnostic of infections during a pandemic.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongbin Chen ◽  
Shuai Yu ◽  
Haiyang Liu ◽  
Jie Liu ◽  
Yongguang Xiao ◽  
...  

AbstractAssessment of lung and heart states is of critical importance for patients with pneumonia. In this study, we present a small-sized and ultrasensitive accelerometer for continuous monitoring of lung and heart sounds to evaluate the lung and heart states of patients. Based on two-stage amplification, which consists of an asymmetric gapped cantilever and a charge amplifier, our accelerometer exhibited an extremely high ratio of sensitivity to noise compared with conventional structures. Our sensor achieves a high sensitivity of 9.2 V/g at frequencies less than 1000 Hz, making it suitable to use to monitor weak physiological signals, including heart and lung sounds. For the first time, lung injury, heart injury, and both lung and heart injuries in discharged pneumonia patients were revealed by our sensor device. Our sound sensor also successfully tracked the recovery course of the discharged pneumonia patients. Over time, the lung and heart states of the patients gradually improved after discharge. Our observations were in good agreement with clinical reports. Compared with conventional medical instruments, our sensor device provides rapid and highly sensitive detection of lung and heart sounds, which greatly helps in the evaluation of lung and heart states of pneumonia patients. This sensor provides a cost-effective alternative approach to the diagnosis and prognosis of pneumonia and has the potential for clinical and home-use health monitoring.


2001 ◽  
Vol 227-228 ◽  
pp. 143-149
Author(s):  
Larry Leung ◽  
Damian Davison ◽  
Arthur Cornfeld ◽  
Frederick Towner ◽  
Dave Hartzell

2014 ◽  
Vol 1685 ◽  
Author(s):  
Ho Yeon Son ◽  
Yoon Sung Nam ◽  
Woo Soo Kim

ABSTRACTHere we introduce a facile method to fabricate a flexible piezoelectric sensor using one-dimensional (1-D) piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers directly produced onto flexible printed electrodes by electro-spinning without an additional poling process. The flexible silver electrodes are fabricated on polyethylene terephthalate (PET) using silver nanowires by easy and cost-effective spraying deposition. The electrospun PVDF nanofibers have uniaxially aligned arrays on the electrodes by using a rotating collector. The fabricated PVDF piezoelectric sensors demonstrate the piezoelectric responses with repeated mechanical stimuli with good flexibility and high sensitivity. We expect that the facile fabrication of PVDF piezoelectric sensors on flexible printed electrodes can be usefully exploited to integrate the piezoelectric sensors into flexible and stretchable functional electronic devices.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Pricila da Silva Cunha ◽  
Heloisa B. Pena ◽  
Carla Sustek D’Angelo ◽  
Celia P. Koiffmann ◽  
Jill A. Rosenfeld ◽  
...  

Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36:PRKCZandSKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescentin situhybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR ofPRKCZandSKIis a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.


2015 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Elisabete Galeazzo ◽  
Marcos C. Moraes ◽  
Henrique E. M. Peres ◽  
Michel O. S. Dantas ◽  
Victor G. C. Lobo ◽  
...  

Intensive research has been focused on investigating new sensing materials, such as carbon nanotubes (CNT) because of their promising characteristics. However, there are challenges related to their application in commercial devices such as sensitivity, compatibility, and complexity of miniaturization, among others. We report the study of the electrical behavior of devices composed by multi-walled carbon nanotubes (MWCNT) deposited between aluminum electrodes on glass substrates by means of dielectrophoresis (DEP), which is a simple and cost-effective method. The devices were fabricated by varying the DEP process time. Remarkable changes in their electric resistance were noticed depending on the MWCNT quantities deposited. Other electrical properties of devices such as high sensitivity, fast response time and stability are also characterized in humid environment. A humidity sensing mechanism is proposed on the basis of charge transfer between adsorbed water molecules and the MWNTC surface or between water and the glass surface.


2019 ◽  
Author(s):  
Huilan Yao ◽  
Grant Wu ◽  
Subhasree Das ◽  
Crystal MacKenzie ◽  
Hua Gao ◽  
...  

AbstractHere we report on the development of a sensitive and cost-effective method to longitudinally trackESR1andPIK3CAmutations from cfDNA in patients with metastatic breast cancer (MBC) using a streamlined and de-centralized workflow. Hotspot mutations inESR1have been shown to cause resistance to aromatase inhibitor–based and anti-estrogenic therapies, whilePIK3CAmutations have high prevalence in MBC. As a result, their utility as circulating biomarkers to predict or monitor response in the clinical development of investigational compounds has been the focus of many studies. Six regions inESR1andPIK3CAgenes containing 20 hotspot mutations were pre-amplified, followed by optimized singleplex ddPCR assays to detect allele frequencies of individual mutations. Without pre-amplification, the limit of detection (LOD) and limit of linearity (LOL) of individual ddPCR assays were at 0.05-0.1% and 0.25% level, respectively. With pre-amplification, the LOD and LOL were slightly elevated at 0.1-0.25% and 0.25-0.5% levels, respectively. High concordance was achieved to the BEAMing assay (Sysmex Inostics) for mutation positive assays (r=0.98, P<0.0001). In conclusion, coupling pre-amplification and ddPCR assays allowed us for the detection of up to 20 hot spot mutations inESR1andPIK3CAwith high sensitivity and reproducibility.


2020 ◽  
Author(s):  
Liang Fang ◽  
Guipeng Li ◽  
Qionghua Zhu ◽  
Huanhuan Cui ◽  
Yunfei Li ◽  
...  

AbstractSample multiplexing facilitates single cell sequencing by reducing costs, revealing subtle difference between similar samples, and identifying artifacts such as cell doublets. However, universal and cost-effective strategies are rather limited. Here, we reported a Concanavalin A-based Sample Barcoding strategy (CASB), which could be followed by both single-cell mRNA and ATAC (assay for transposase accessible chromatin) sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. We demonstrated its high labeling efficiency, high accuracy in assigning cells/nuclei to samples regardless of cell type and genetic background, as well as high sensitivity in detecting doublets by two applications: 1) CASB followed by scRNA-seq to track the transcriptomic dynamics of a cancer cell line perturbed by multiple drugs, which revealed compound-specific heterogeneous response; 2) CASB together with both snATAC-seq and scRNA-seq to illustrate the IFN-γ-mediated dynamic changes on epigenome and transcriptome profile, which identified the transcription factor underlying heterogeneous IFN-γ response.


Sign in / Sign up

Export Citation Format

Share Document