ASSESSING PATTERNS OF MORPHOLOGICAL DIVERSITY IN COCCOLITHOPHORES WHEN COCCOSPHERES ARE EXCLUDED FROM THE FOSSIL RECORD

2016 ◽  
Author(s):  
Marites Villarosa Garcia ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 001-014
Author(s):  
MATHIAS JASCHHOF

Twenty-four fossil gall midges (Cecidomyiidae) described from 1917–2020 from Mesozoic deposits, mostly ambers, are reviewed. Information from the original publications is used as the basis for reinterpretation, when such is regarded as appropriate here. As a result, the fossil record of cecidomyiids from the Mesozoic comprises representatives of the following subfamilies and tribes, all mycophagous (numbers in parentheses refer to species described): Catotrichinae (1); Micromyinae: Catochini (2), Amediini (1), Campylomyzini (1), Micromyini (2) and Aprionini (1); Winnertziinae: Heteropezini (2), Diallactiini (4) and Winnertziini (1); Porricondylinae: Dicerurini (1). Other Winnertziinae (3) and Micromyinae (5) cannot be classified to tribe because information on critical morphological structures is unavailable; they are thus considered incertae sedis. Members of the Lestremiinae sensu stricto are unrecorded from the Mesozoic, as are any Cecidomyiinae (the only subfamily containing phytophages and predators). Commonly occurring reasons for misinterpretation of amber fossils are the non-recognition of artefacts and the unfamiliarity with group-specific literature regarding prevailing taxonomic concepts and the morphological diversity found in Cecidomyiidae. These causes as well as obvious differences between neontological and paleontological taxonomic practices are discussed. Amediini trib. nov. Jaschhof, 2021 is introduced as a new tribe of the Micromyinae, to absorb the genera Amedia Jaschhof, 1997 (extant, North America, type genus), Amediella Jaschhof, 2003 (extant, New Zealand) and Eltxo Arillo & Nel, 2000 (extinct, Alava amber). A diagnosis of the new tribe is given. Krassiloviolini Fedotova & Perkovsky, 2017 is a new junior synonym of Heteropezini Schiner, 1868. Amediini Plakidas, 2017 and Zarqacecidomyius singularis Kaddumi, 2007 are nomina nuda.


2015 ◽  
Vol 282 (1810) ◽  
pp. 20150569 ◽  
Author(s):  
Michael J. Benton

Macroevolution, encompassing the deep-time patterns of the origins of modern biodiversity, has been discussed in many contexts. Non-Darwinian models such as macromutations have been proposed as a means of bridging seemingly large gaps in knowledge, or as a means to explain the origin of exquisitely adapted body plans. However, such gaps can be spanned by new fossil finds, and complex, integrated organisms can be shown to have evolved piecemeal. For example, the fossil record between dinosaurs and Archaeopteryx has now filled up with astonishing fossil intermediates that show how the unique plexus of avian adaptations emerged step by step over 60 Myr. New numerical approaches to morphometrics and phylogenetic comparative methods allow palaeontologists and biologists to work together on deep-time questions of evolution, to explore how diversity, morphology and function have changed through time. Patterns are more complex than sometimes expected, with frequent decoupling of species diversity and morphological diversity, pointing to the need for some new generalizations about the processes that lie behind such patterns.


2021 ◽  
Author(s):  
Xi Yao ◽  
Paul Barrett ◽  
Lei Yang ◽  
Xing Xu ◽  
Shundong Bi

The early evolutionary history of the armoured dinosaurs (Thyreophora) is obscured by its patchily distributed fossil record and by conflicting views on the relationships of its Early Jurassic representatives. Here, we describe an early-diverging thyreophoran from the Lower Jurassic Fengjiahe Formation of Yunnan Province, China, on the basis of an associated partial skeleton that includes skull, axial, limb and armour elements. It can be diagnosed as a new taxon based on numerous cranial and postcranial autapomorphies and is further distinguished from all other thyreophorans by a unique combination of character states. Although the robust postcranium is similar to that of more deeply nested ankylosaurs and stegosaurs, phylogenetic analysis recovers it as either the sister taxon of Emausaurus or of the clade Scelidosaurus and Eurypoda. This new taxon, Yuxisaurus kopchicki, represents the first valid thyreophoran dinosaur to be described from the Early Jurassic of Asia and confirms the rapid geographic spread and diversification of the clade after its first appearance in the Hettangian. Its heavy build and distinctive armour also hint at previously unrealised morphological diversity early in the clade history.


2016 ◽  
Vol 371 (1691) ◽  
pp. 20150223 ◽  
Author(s):  
Clive N. Trueman ◽  
Ming-Tsung Chung ◽  
Diana Shores

The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 359 ◽  
Author(s):  
Keyron Hickman-Lewis ◽  
Pascale Gautret ◽  
Laurent Arbaret ◽  
Stéphanie Sorieul ◽  
Rutger De Wit ◽  
...  

Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved fossil microbialites can reinforce our understanding of their biogeochemistry and distinguish unambiguous biological characteristics in these structures, which represent some of the earliest records of life. Mechanistic morphogenetic understanding relies upon the analysis of geomicrobiological experiments. Herein, we report morphological-biogeochemical comparisons between micromorphologies observed in growth experiments using photosynthetic mats built by the cyanobacterium Coleofasciculus chthonoplastes (formerly Microcoleus) and green anoxygenic phototrophic Chloroflexus spp. (i.e., Coleofasciculus–Chloroflexus mats), and Precambrian organo-sedimentary structures, demonstrating parallels between them. In elevated ambient concentrations of Cu (toxic to Coleofasciculus), Coleofasciculus–Chloroflexus mats respond by forming centimetre-scale pinnacle-like structures (supra-lamina complexities) associated with large quantities of EPS at their surfaces. µPIXE mapping shows that Cu and other metals become concentrated within surficial sheath-EPS-Chloroflexus-rich layers, producing density-differential micromorphologies with distinct fabric orientations that are detectable using X-ray computed micro-tomography (X-ray µCT). Similar micromorphologies are also detectable in stromatolites from the 3.481 Ga Dresser Formation (Pilbara, Western Australia). The cause and response link between the presence of toxic elements (geochemical stress) and the development of multi-layered topographical complexities in organo-sedimentary structures may thus be considered an indicator of biogenicity, being an indisputably biological and predictable morphogenetic response reflecting, in this case, the differential responses of Coleofasciculus and Chloroflexus to Cu. Growth models for microbialite morphogenesis rely upon linking morphology to intrinsic (biological) and extrinsic (environmental) influences. Since the pinnacles of Coleofasciculus–Chloroflexus mats have an unambiguously biological origin linked to extrinsic geochemistry, we suggest that similar micromorphologies observed in ancient organo-sedimentary structures are indicative of biogenesis. An identical Coleofasciculus–Chloroflexus community subjected to salinity stress also produced supra-lamina complexities (tufts) but did not produce identifiable micromorphologies in three dimensions since salinity seems not to negatively impact either organism, and therefore cannot be used as a morphogenetic tool for the interpretation of density-homogeneous micro-tufted mats—for example, those of the 3.472 Ga Middle Marker horizon. Thus, although correlative microscopy is the keystone to confirming the biogenicity of certain Precambrian stromatolites, it remains crucial to separately interrogate each putative trace of ancient life, ideally using three-dimensional analyses, to determine, where possible, palaeoenvironmental influences on morphologies. Widespread volcanism and hydrothermal effusion into the early oceans likely concentrated toxic elements in early biomes. Morphological diversity in fossil microbialites could, therefore, reflect either (or both of) differential exposure to ambient fluids enriched in toxic elements and/or changing ecosystem structure and tolerance to elements through evolutionary time—for example, after incorporation into enzymes. Proof of biogenicity by deducing morphogenesis (i.e., a process preserved in the fossil record) overcomes many of the shortcomings inherent to the proof of biogenicity by descriptions of morphology alone.


2020 ◽  
Author(s):  
Nkrumah A. Grant ◽  
Ali Abdel Magid ◽  
Joshua Franklin ◽  
Yann Dufour ◽  
Richard E. Lenski

AbstractBacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with Escherichia coli showed that populations evolved larger cells and, in some cases, cells that were less rod-like. That experiment has now run for over two more decades. Meanwhile, genome sequence data are available for these populations, and new computational methods enable high-throughput microscopic analyses. Here, we measured stationary-phase cell volumes for the ancestor and 12 populations at 2,000, 10,000, and 50,000 generations, including measurements during exponential growth at the last timepoint. We measured the distribution of cell volumes for each sample using a Coulter counter and microscopy, the latter of which also provided data on cell shape. Our data confirm the trend toward larger cells, while also revealing substantial variation in size and shape across replicate populations. Most populations first evolved wider cells, but later reverted to the ancestral length-to-width ratio. All but one population evolved mutations in rod-shape maintenance genes. We also observed many ghost-like cells in the only population that evolved the novel ability to grow on citrate, supporting the hypothesis that this lineage struggles with maintaining balanced growth. Lastly, we show that cell size and fitness remain correlated across 50,000 generations. Our results suggest larger cells are beneficial in the experimental environment, while the reversion toward ancestral length-to-width ratios suggests partial compensation for the less favorable surface area-to-volume ratios of the evolved cells.ImportanceBacteria exhibit great morphological diversity, yet we have only a limited understanding of how their cell sizes and shapes evolve, and of how these features affect organismal fitness. This knowledge gap reflects, in part, the paucity of the fossil record for bacteria. Here, we revive and analyze samples extending over 50,000 generations from 12 populations of experimentally evolving Escherichia coli to investigate the relation between cell size, shape, and fitness. Using this “frozen fossil record” we show that all 12 populations evolved larger cells concomitant with increased fitness, with substantial heterogeneity in cell size and shape across the replicate lines. Our work demonstrates that cell morphology can readily evolve and diversify, even among populations living in identical environments.


Botany ◽  
2021 ◽  
pp. 457-473
Author(s):  
Brian A. Atkinson ◽  
Dori L. Contreras ◽  
Ruth A. Stockey ◽  
Gar W. Rothwell

Conifers of the taxodiaceous grade of Cupressaceae were more diverse and widespread during the Mesozoic than they are today. The earliest diverging subfamily, Cunninghamioideae, only includes a single extant genus, but has at least 10 fossil genera. Here, two additional cunninghamioid genera are characterized on the basis of permineralized seed cones from the Upper Cretaceous of Hokkaido, Japan. These conifers display seed cone characters typical of cunninghamioids; however, they have a mosaic of characters that are not seen in any reported conifer of Cupressaceae. They are, therefore, designated as two new extinct species: Ohanastrobus hokkaidoensis gen. et sp. nov. and Nishidastrobus japonicum gen. et sp. nov. These newly reported conifers expand the taxonomic and morphological diversity of cunninghamioids. The stratigraphic and paleobiogeographic records of cunninghamioids and other fossil Cupressaceae with foliate seed cones indicate they peak in diversity during the Cretaceous. The living genera Taiwania and Cunninghamia appear during the Albian and Campanian, respectively, and maintain a nearly continuous fossil record through to today, while nearly all other extinct genera of Cupressaceae with foliate cones disappear by the close of the Campanian. As more ancient cunninghamioids are recovered, our understanding of macroevolutionary patterns of this once diverse lineage will be further elucidated.


1996 ◽  
Vol 1 ◽  
pp. 39-57 ◽  
Author(s):  
Sandra L. Romano

The evolutionary history of scleractinian corals, based on morphological taxonomy and inferences from the fossil record, has been poorly understood. Molecular techniques developed over the past ten years are now being used to gain a new perspective on scleractinian phylogeny. DNA sequences, mitochondrial genome structure, and morphological characters support a basal position for the Anthozoa in the phylum Cnidaria. Mitochondrial and nuclear DNA sequences suggest a relatively derived position of the order Scleractinia within the class Anthozoa. Mitochondrial and nuclear DNA sequences have provided a new hypothesis for evolution within the Scleractinia that is different from hypotheses based on morphological characters of extant and fossil taxa. Groupings within the two major lineages defined by molecular data do not correspond to morphological suborder groupings although groupings of genera within families do correspond to traditional taxonomy. This new molecular hypothesis suggests that the Scleractinia are represented by two major lineages that diverged from each other before the appearance of the scleractinian skeleton in the fossil record. This divergence time supports the hypotheses that the Scleractinia are not related to the Rugosa of the Paleozoic and that the scleractinian skeleton has evolved more than once. These two major lineages may represent two architectural strategies within the Scleractinia that have led to their great morphological diversity.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10356
Author(s):  
Viktor A. Baranov ◽  
Yinan Wang ◽  
Rok Gašparič ◽  
Sonja Wedmann ◽  
Joachim T. Haug

Stratiomyomorpha (soldier flies and allies) is an ingroup of Diptera, with a fossil record stretching back to the Early Cretaceous (the Barremian, about 125 MYA). Stratiomyomorpha includes at least 3,000 species in the modern fauna, with many species being crucial for ecosystem functions, especially as saprophages. Larvae of many stratiomyomorphans are especially important as scavengers and saproxyls in modern ecosystems. Yet, fossil larvae of the group are extremely scarce. Here we present 23 new records of fossil stratiomyomorphan larvae, representing six discrete morphotypes. Specimens originate from Cretaceous amber from Myanmar, Eocene Baltic amber, Miocene Dominican amber, and compression fossils from the Eocene of Messel (Germany) and the Miocene of Slovenia. We discuss the implications of these new records for our understanding of stratiomyomorphan ecomorphology in deep time as well as their palaeoecology.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax5858 ◽  
Author(s):  
Luke Parry ◽  
Jean-Bernard Caron

Annelid worms are a disparate, primitively segmented clade of bilaterians that first appear during the early Cambrian Period. Reconstructing their early evolution is complicated by the extreme morphological diversity in early diverging lineages, rapid diversification, and sparse fossil record. Canadia spinosa, a Burgess Shale fossil polychaete, is redescribed as having palps with feeding grooves, a dorsal median antenna and biramous parapodia associated with the head and flanking a ventral mouth. Carbonaceously preserved features are identified as a terminal brain, circumoral connectives, a midventral ganglionated nerve cord and prominent parapodial nerves. Phylogenetic analysis recovers neuroanatomically simple extant taxa as the sister group of other annelids, but the phylogenetic position of Canadia suggests that the annelid ancestor was reasonably complex neuroanatomically and that reduction of the nervous system occurred several times independently in the subsequent 500 million years of annelid evolution.


Sign in / Sign up

Export Citation Format

Share Document