HIGH RESOLUTION GEODETIC MEASUREMENTS OF CO-SEISMIC FAULT-ZONE DEFORMATION FOR PROBABILISTIC FAULT DISPLACEMENT HAZARD ASSESMENT AND CONFIDENCE INTERVALS ON GEOLOGIC SLIP RATES

2018 ◽  
Author(s):  
Christopher Milliner ◽  
2007 ◽  
Vol SpecialIssue ◽  
pp. 78-79 ◽  
Author(s):  
Y. Ben-Zion ◽  
Z. Peng ◽  
M. Lewis ◽  
J. McGuire

No abstract available. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.s01.23.2007" target="_blank">10.2204/iodp.sd.s01.23.2007</a>


2018 ◽  
Vol 71 (0) ◽  
pp. 33-42
Author(s):  
Shigeru Ino ◽  
Shigeyuki Suda ◽  
Hidekuni Kikuchi ◽  
Shiro Ohkawa ◽  
Shintaro Abe ◽  
...  

2009 ◽  
Author(s):  
Ray W. Sliter ◽  
Peter J. Triezenberg ◽  
Patrick E. Hart ◽  
Janet T. Watt ◽  
Samuel Y. Johnson ◽  
...  

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.


2008 ◽  
Vol 98 (6) ◽  
pp. 2948-2961 ◽  
Author(s):  
C. C. Tsai ◽  
R. D. Catchings ◽  
M. R. Goldman ◽  
M. J. Rymer ◽  
P. Schnurle ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


2007 ◽  
Vol 40 (4) ◽  
pp. 1586 ◽  
Author(s):  
N. Palyvos ◽  
D. Pantosti ◽  
L. Stamatopoulos ◽  
P. M. De Martini

In this communication we discuss reconnaissance geomorphological observations along the active Psathopyrgos and Rion-Patras (NE part) fault zones. These fault zones correspond to more or less complex rangefronts, the geomorphic characteristics of which provide hints on the details of the fault zone geometries, adding to the existing geological data in the bibliography. Aiming at the identification of locations suitable or potentially suitable for geomorphological and geological studies for the determination of fault slip rates in the Holocene, we describe cases of faulted Holocene landforms and associated surficial deposits. We also discuss problems involved in finding locations suitable for geological (paleoseismological) studies for the determination of the timing of recent earthquake ruptures, problems due to both man-made and natural causes.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


Sign in / Sign up

Export Citation Format

Share Document