USE OF HIGH TEMPORAL AND SPATIAL RESOLUTION DATA TO EXAMINE HYDROLOGIC CONTROLS ON DISSOLVED ORGANIC MATTER AND MAJOR ION VARIABILITY IN NINE NESTED WATERSHEDS WITHIN THE PASSUMPSIC RIVER WATERSHED, VT, USA

2018 ◽  
Author(s):  
Jennifer Hoyle Fair ◽  
◽  
Serena Matt ◽  
Jacob Hosen ◽  
James E. Saiers ◽  
...  
2011 ◽  
Vol 12 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Liyang Yang ◽  
Huasheng Hong ◽  
Weidong Guo ◽  
Jinliang Huang ◽  
Qingsheng Li ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
pp. 274-281 ◽  
Author(s):  
Jiang Chen ◽  
Weining Zhu ◽  
Yuhan Zheng ◽  
Yong Q. Tian ◽  
Qian Yu

Abstract Remote sensing is an effective tool for studying CDOM (colored dissolved organic matter) variations and its relevant environmental factors. Monitoring CDOM distribution and dynamics in small water is often limited by the coarse spatial resolution of traditional ocean color sensors. In this study, because of its high spatial resolution of 30 m, Landsat-8 data were used to assess seasonal variations of CDOM in the Saginaw River, by using an empirical statistic model. Pearson correlation analysis between CDOM variations and other environmental factors, such as temperature, discharge, and dissolved oxygen, shows that temperature was negatively correlated to CDOM variations and discharge played a positive role. We also calculated the monthly mean aCDOM(440) (the absorption coefficient of CDOM at 440 nm) for the Saginaw River between April and November from 2013 to 2016. This study demonstrates a good example for future applications in small waters: observing CDOM variations and other relevant environmental factors change by using Landsat remote sensing, so that we can know more about water quality and ecosystem health of small waters as well as the climate change impact on regional watersheds.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3481
Author(s):  
Zheng Li ◽  
Zhenghui Fu ◽  
Yang Zhang ◽  
Yunyan Guo ◽  
Feifei Che ◽  
...  

Dissolved organic matter (DOM) has a great impact on the main pollution indicators of lakes (such as chemical oxygen demand, COD). Therefore, DOM is the research basis for understanding the meaning of the water environment and the laws of the migration and transformation of pollutants. Qinghai Lake is one of the world’s typical inland plateau lake wetlands. It plays important roles in improving and regulating the climate and in promoting a virtuous regional ecological cycle. In recent years, with the acceleration of urbanization and the rapid development of tourism, under the background of climate change, and with grassland degradation and precipitation change, the whole basin of Qinghai Lake has been facing great ecological pressure. In order to comprehensively explore the water environment of Qinghai Lake and to protect the sustainable development of the basin, a systematic study was carried out on the whole basin of Qinghai Lake. The results show the following: (1) from 2010 to 2020, the annual average value of CODCr in Qinghai Lake fluctuated in the range from class III to class V according to the surface water environmental quality standard, showing first a downward trend and then an upward trend. (2) The concentration of CDOM in Qinghai Lake had obvious temporal and spatial changes. (3) The spatial distribution of the total fluorescence intensity of FDOM in water was also different in different seasons. However, in the three surveys, the area with the highest total fluorescence intensity of FDOM in the water body appeared near Erlangjian in the south of Qinghai Province, indicating that anthropogenic sources are the main controlling factors of dissolved organic matter in the lake.


2006 ◽  
Vol 68 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Paul C. Frost ◽  
James H. Larson ◽  
Carol A. Johnston ◽  
Katie C. Young ◽  
Patricia A. Maurice ◽  
...  

2013 ◽  
Vol 10 (8) ◽  
pp. 5555-5569 ◽  
Author(s):  
S. Halbedel ◽  
O. Büttner ◽  
M. Weitere

Abstract. Dissolved organic matter (DOM) is an important resource for microbes, thus affecting whole-stream metabolism. However, the factors influencing its chemical composition and thereby also its bio-availability are complex and not thoroughly understood. It was hypothesized that whole-stream metabolism is linked to DOM composition and that the coupling of both is influenced by seasonality and different land-use types. We tested this hypothesis in a comparative study on two pristine forestry streams and two non-forestry streams. The investigated streams were located in the Harz Mountains (central Europe, Germany). The metabolic rate was measured with a classical two-station oxygen change technique and the variability of DOM with fluorescence spectroscopy. All streams were clearly net heterotrophic, whereby non-forestry streams showed a higher primary production, which was correlated to irradiance and phosphorus concentration. We detected three CDOM components (C1, C2, C3) using parallel factor (PARAFAC) analysis. We compared the excitation and emission maxima of these components with the literature and correlated the PARAFAC components with each other and with fluorescence indices. The correlations suggest that two PARAFAC components are derived from allochthonous sources (C1, C3) and one is derived autochthonously (C2). The chromophoric DOM matrix was dominated by signals of humic-like substances with a highly complex structure, followed by humic-like, fulfic acids, low-molecular-weight substances, and with minor amounts of amino acids and proteins. The ratios of these PARAFAC components (C1 : C2, C1 : C3, C3 : C2) differed with respect to stream types (forestry versus non-forestry). We demonstrated a significant correlation between gross primary production (GPP) and signals of autochthonously derived, low-molecular-weight humic-like substances. A positive correlation between P / R (i.e. GPP/daily community respiration) and the fluorescence index FI suggests that the amount of autochthonously produced DOM increased overall with increasing GPP. In accordance with the coupling between DOM and the metabolism, our data also indicate that the composition of DOM is subject to seasonal fluctuations. We concluded that temporal and spatial differences in DOM composition are driven by whole-stream metabolism, in addition to pronounced effects coming from allochthonous sources.


Sign in / Sign up

Export Citation Format

Share Document