TRACE METAL SEQUESTRATION IN RIPARIAN SOILS AND TRANSPORT OF DISSOLVED AND SUSPENDED SEDIMENT IN THE THAMES RIVER WATERSHED

2020 ◽  
Author(s):  
Mark J. Butler ◽  
◽  
Justin B. Richardson
2020 ◽  
Author(s):  
Christopher Mills ◽  
◽  
David C. Smith ◽  
Craig A. Stricker ◽  
John G. Schumacher ◽  
...  

RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Marcio Sousa da Silva ◽  
Rosane Lopes Cavalcante ◽  
Pedro Walfir Martins e Souza Filho ◽  
Renato Oliveira da Silva Júnior ◽  
Paulo Rógenes Pontes ◽  
...  

ABSTRACT Understanding the hydrosedimentological dynamics of tropical rivers is a challenge in the Amazon due to its remote and difficult-to-access areas. This study was based on data collected from 16 hydrosedimentological control sections in the 6 subbasins that make up the Itacaiúnas River Watershed (IRW), with 4 annual campaigns (high water levels, rising water levels, falling water levels, low water levels) between 2015 and 2019, with the aim of constructing and comparing sediment rating curves and sediment yield. The data at the mouth of the IRW revealed that the rainy season is responsible for 93% of liquid discharges (Q) with an average of 1460.88 m3/s and for 98% of suspended sediment discharges (SSQ) with an average of 5864.15 tons/day. Suspended sediment concentrations (SSCs) are low to moderate (50 to 150 mg/l). The curves encompassing all the data showed R2 values (0.92 to 0.99) greater than the curves with only the values of the rainy or dry season, indicating a good fit of the power equation to the SSQ and Q data for all sections studied. Higher values of coefficients a and b show areas of greater sediment production and deforestation, as well as areas with new sources of sediment and preserved forest.


1980 ◽  
Vol 17 (1) ◽  
pp. 90-105 ◽  
Author(s):  
A. Tessier ◽  
P. G. C. Campbell ◽  
M. Bisson

Water and suspended sediment samples were collected at 12 stations on the Yamaska and St. François Rivers, located in southeastern Quebec, and were analyzed for the trace metals Cd, Co, Cu, Ni, Pb, Zn, Fe, and Mn. The suspended sediment samples were subjected to a sequential extraction procedure designed to partition the particulate trace metals into five fractions: (1) exchangeable; (2) bound to carbonates; (3) bound to Fe–Mn oxides; (4) bound to organic matter; and (5) residual.Although suspended sediment levels as well as total soluble and particulate trace metal concentrations were highly variable in time and space, speciation patterns for each metal proved reasonably constant. Very small proportions of all metals, except Cd and Mn, were found in the exchangeable fraction, whereas high levels of all metals were present in the residual fraction; Fe–Mn oxides and organic matter constituted important transport phases for most metals. Deviations from this general behaviour were occasioned by man-induced perturbations (e.g., inputs of municipal sewage or mine waste water). At stations influenced by such factors, total particulate metal concentrations increased and the relative contribution of the residual fraction decreased. The trace metal content of fraction 3 proved to be particularly sensitive to anthropogenic inputs; other phases acting as trace metal sinks included those liberated in fractions 1 (Cd, Cu, Ni, Zn), 2(Cu, Ni, Zn), and 4(Cu, Ni).


Sign in / Sign up

Export Citation Format

Share Document