scholarly journals Supplemental Material: Evaluating preservation bias in the continental growth record against the monazite archive

2021 ◽  
Author(s):  
Jack Mulder ◽  
Peter A. Cawood

Table S1 (global compilation of monazite ages); Table S2 (compilation of whole rock geochemistry of monazite-bearing rocks); data sources for the zircon ages from the Himalayan orogen and Figure S1 (comparison of monazite and zircon age histograms and cross-correlation results based on the monazite dating method).<br>

2021 ◽  
Author(s):  
Jack Mulder ◽  
Peter A. Cawood

Table S1 (global compilation of monazite ages); Table S2 (compilation of whole rock geochemistry of monazite-bearing rocks); data sources for the zircon ages from the Himalayan orogen and Figure S1 (comparison of monazite and zircon age histograms and cross-correlation results based on the monazite dating method).<br>


Geology ◽  
2021 ◽  
Author(s):  
Jacob A. Mulder ◽  
Peter A. Cawood

Most recent models of continental growth are based on large global compilations of detrital zircon ages, which preserve a distinctly episodic record of crust formation over billion-year timescales. However, it remains unclear whether this uneven distribution of zircon ages reflects a true episodicity in the generation of continental crust through time or is an artifact of the selective preservation of crust isolated in the interior of collisional orogens. We address this issue by analyzing a new global compilation of monazite ages (n &gt;100,000), which is comparable in size, temporal resolution, and spatial distribution to the zircon continental growth record and unambiguously records collisional orogenesis. We demonstrate that the global monazite and zircon age distributions are strongly correlated throughout most of Earth history, implying a link between collisional orogenesis and the preserved record of continental growth. Our findings support the interpretation that the continental crust provides a preservational, rather than generational, archive of crustal growth.


Author(s):  
Douglas L. Dorset ◽  
Barbara Moss

A number of computing systems devoted to the averaging of electron images of two-dimensional macromolecular crystalline arrays have facilitated the visualization of negatively-stained biological structures. Either by simulation of optical filtering techniques or, in more refined treatments, by cross-correlation averaging, an idealized representation of the repeating asymmetric structure unit is constructed, eliminating image distortions due to radiation damage, stain irregularities and, in the latter approach, imperfections and distortions in the unit cell repeat. In these analyses it is generally assumed that the electron scattering from the thin negativelystained object is well-approximated by a phase object model. Even when absorption effects are considered (i.e. “amplitude contrast“), the expansion of the transmission function, q(x,y)=exp (iσɸ (x,y)), does not exceed the first (kinematical) term. Furthermore, in reconstruction of electron images, kinematical phases are applied to diffraction amplitudes and obey the constraints of the plane group symmetry.


Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


1999 ◽  
Vol 79 (3) ◽  
pp. 161-168 ◽  
Author(s):  
David Roberts ◽  
August L. Nissen ◽  
Nicholas Walker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document