scholarly journals Feasibility study of repurposing Trenton–Black River gas fields for geothermal heat extraction, southern New York

Geosphere ◽  
2016 ◽  
Vol 13 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Erin Camp ◽  
Teresa Jordan
Energy ◽  
2018 ◽  
Vol 153 ◽  
pp. 554-567 ◽  
Author(s):  
Shabnam Gharibi ◽  
Emad Mortezazadeh ◽  
Seyed Jalaledin Hashemi Aghcheh Bodi ◽  
Ali Vatani

2021 ◽  
Author(s):  
Benjamin Adams ◽  
Jonathan Ogland-Hand ◽  
Jeffrey M. Bielicki ◽  
Philipp Schädle ◽  
Martin Saar

<p><b>Abstract</b></p><p>Sedimentary basins are ubiquitous, naturally porous and permeable, and the geothermal heat in these basins can be extracted with geologic water or CO<sub>2</sub> and used to generate electricity. Despite this, the broad potential that these formations may have for electricity generation is unknown. Here we investigate this potential, which required the creation of the <u>gen</u>eralizable <u>GEO</u>thermal techno-economic simulator (genGEO). genGEO is built with only publicly available data and uses five standalone, but integrated, models that directly simulate all components of geothermal power plants to estimate electricity generation and cost. As a result of this structure, genGEO, or a portion of it, can be applied or extended to study any geothermal power technology. In contrast, the current techno-economic tools for geothermal power plants rely on characterizations of unpublished ASPEN results and are thus not generalizable enough to be applied to sedimentary basin geothermal power plants which use subsurface CO<sub>2</sub>.</p> <p>In this study, we present genGEO as open-source software, validate it with industry data, and compare its estimates to other geothermal techno-economic tools. We then apply genGEO to sedimentary basin geothermal resources and find that using CO<sub>2</sub> as a subsurface heat extraction fluid compared to water decreases the cost of geothermal electricity across most geologic conditions that are representative of sedimentary basins. Using genGEO results and p50 geologic data, we produce supply curves for sedimentary basin geothermal power plants in the U.S., which suggests that there is present-day potential to profitably increase the capacity of geothermal power by ~10% using water as the subsurface heat extraction fluid. More capacity is available at lower cost when CO<sub>2</sub> is used as the subsurface fluid, but realizing this capacity requires geologically storing between ~2 and ~7 MtCO<sub>2</sub>/MW<sub>e</sub>. But developing sedimentary basin resources in the short-term using subsurface water may not eliminate options for CO₂-based power plants in the long-term because the least-cost order of sedimentary basins is not the same for both CO<sub>2</sub> and water. With sufficient geologic CO<sub>2</sub> storage, developing sedimentary basins using CO<sub>2</sub>- and water-based power plants may be able to proceed in parallel.</p>


2017 ◽  
Vol 25 ◽  
pp. 28-34
Author(s):  
Ivan Sadovenko ◽  
Dmytro Rudakov ◽  
Oleksandr Inkin

The total resources of geothermal energy in Ukraine up to the depth of 10 km are estimated at 1022 J, which significantly exceeds the reserves of fossil fuel sources. Nevertheless, geothermal exploration in each specific case requires comprehensive thermodynamic and feasibility studies taking into account local geological, hydrogeological conditions, and depth ranges. To facilitate such kind of studies an analysis has been made for Ukraine’s territory with the identification of aquifers that can be potentially used including the Transcarpathian trough, the Volyn-Podil’ska plate, the Dnipro-Donets depression, and Black Sea coast area. Regarding high thermal water mineralization a geo-technological scheme has been justified for environmentally safe exploration that suggests a closed cycle including (i) pumping out water to the surface, (ii) heat extraction, and (iii) re-injection of water into the aquifer. A mathematical model developed to evaluate the geo-circulation system effectiveness for various conditions allows predicting the changes in water temperature during circulation, power consumption, and heat capacity. Besides, the model enables optimizing the system performance depending on pumped water temperature. We assessed the effectiveness of geothermal heat extraction with the geo-circulation system in terms of profitability and net the present value (NPV). According to the estimations made for aquifers in Ukraine the geo-circulation system can be operated with the positive NPV in many regions of the country depending on the aquifer depth, heat flux, and groundwater flow. The obtained results correlate to the world standards of rational exploitation of geothermal energy.


Sign in / Sign up

Export Citation Format

Share Document