Flare Energy Release and Electron Acceleration to Relativistic Energies by Quasi-Stationary Electric Fields in the Lower Atmosphere of the Sun

2019 ◽  
Vol 59 (7) ◽  
pp. 789-792
Author(s):  
Yu. T. Tsap ◽  
A. V. Stepanov ◽  
Yu. G. Kopylova
2000 ◽  
Vol 195 ◽  
pp. 123-132 ◽  
Author(s):  
R. Ramaty ◽  
N. Mandzhavidze

Gamma-ray emission is the most direct diagnostic of energetic ions and relativistic electrons in solar flares. Analysis of solar flare gamma-ray data has shown: (i) ion acceleration is a major consequence of flare energy release, as the total flare energy in accelerated particles appears to be equipartitioned between ≳ 1 MeV/nucleon ions and ≳ 20 keV electrons, and amounts to an important fraction of the total energy release; (ii) there are flares for which over 50% of the energy is in a particles and heavier ions; (iii) in both impulsive and gradual flares, the particles that interact at the Sun and produce gamma rays are essentially always accelerated by the same mechanism that operates in impulsive flares, probably stochastic acceleration through gyroresonant wave particle interaction; and (iv) gamma-ray spectroscopy can provide new information on solar abundances, for example the site of the FIP-bias onset and the photospheric 3He abundance. We propose a new technique for the investigation of mass motion and mixing in the solar atmosphere: the observations of gamma-ray lines from long-term radioactivity produced by flare accelerated particles.


1988 ◽  
Vol 326 ◽  
pp. 425 ◽  
Author(s):  
Marcos E. Machado ◽  
Ronald L. Moore ◽  
Ana M. Hernandez ◽  
Marta G. Rovira ◽  
Mona J. Hagyard ◽  
...  

2000 ◽  
Vol 195 ◽  
pp. 413-414
Author(s):  
S. Masuda

Extended AbstractThe Hard X-ray Telescope (HXT: Kosugi et al. 1991) onboard Yohkoh has observed that, in impulsive solar flares, a hard X-ray source is located above the apex of a soft X-ray flaring loop, in addition to double footpoint sources (Masuda et al. 1994, 1995). This observation suggests that flare energy-release, probably magnetic reconnection, takes place not in the soft X-ray loop but above the loop. It is important to derive the hard X-ray spectrum of the above-the-looptop source accurately in order to understand how electrons are energized there. The above-the-looptop source was most clearly observed during the 13 January 1992 flare. However, the count rate, especially in the H-band (53–93 keV), is too small to synthesize high-quality images and to derive an accurate spectrum.


Measurements of the radiation emitted by the sun at radio-frequencies have shown that the intensity greatly exceeds the value associated with a surface temperature of 6000° K. Under normal conditions the radiation, which appears to be randomly polarized, has an intensity which corresponds to the radiation from a black-body source subtending the same solid angle as the solar disk and at a temperature of about 10 6 °K. During the presence of sunspots very much more intense radiation is emitted by small areas of the solar disk; the intensity at these times corresponds to radiation from a source at a temperature of 10 9 to 10 10 °K, and the radiation is circularly polarized. The experimental results are considered theoretically in this paper, and it is concluded that the radiation in both cases arises from the acceleration of electrons in the solar atmosphere. It is suggested that by the action of the permanent magnetic field of the sun and the non-uniform rotation of the surface matter, a high potential difference is developed between the poles and the equator. Under normal conditions this potential can only produce small discharge currents through the solar atmosphere, although the electric field produced may be sufficient to maintain a mean electron temperature of 10 6 to 10 8 °K in the levels likely to emit radio-frequency radiation. During the presence of sunspots much more intense electric fields can be made available in the solar atmosphere, and in the neighbourhood of the sunspots electron temperatures of the order of 1010 °K should be maintained. A high-temperature electron gas can only radiate appreciably at those frequencies at which it absorbs well. An application of the magneto-ionic theory to the solar atmosphere above a sunspot shows that there are several regions capable of absorbing radiation at each frequency. For one of these regions the absorption (and therefore the radiating power) is very great, but radiation emitted by the region can only be propagated towards the centre of the sun. This region cannot therefore be responsible for the high-intensity radiation associated with sunspots, although the asymmetrical flow of energy from the region must produce an outward radiation pressure; this pressure may be of importance in accounting for the elevation of matter in the solar atmosphere above sunspots. Two other regions have a high absorption (each region absorbing one of the two circularly polarized components) and radiation from both regions can escape from the sun. Owing to the differences of radiating power and electron temperature in the two regions, it is likely that the intensities of the two emitted waves will be different. The radiation which is observed on the earth will therefore appear circularly polarized, the sense of the polarization corresponding to that of the most intense wave.


Author(s):  
Fumio Narita ◽  
Yasuhide Shindo ◽  
Mitsuru Hirama

This paper investigates experimentally and analytically the delayed fracture in lead zirconate titanate (PZT) ceramics under electromechanical loading. Delayed fracture tests were conducted on single-edge precracked-beam specimens, and time-to-failure and fracture load under different DC electric fields were obtained. Possible mechanisms for delayed fracture were also discussed by scanning electron microscope (SEM) examination of the fracture surface of the PZT ceramics. Further, a nonlinear finite element analysis was employed to calculate the energy release rate for the permeable, impermeable and open crack models, and the effects of applied DC electric fields and localized polarization switching on the energy release rate are examined.


Physics Today ◽  
1995 ◽  
Vol 48 (1) ◽  
pp. 18-18 ◽  
Author(s):  
Stephen G. Benka

Sign in / Sign up

Export Citation Format

Share Document