On the convergence of difference schemes for fractional differential equations with Robin boundary conditions

2017 ◽  
Vol 57 (1) ◽  
pp. 133-144 ◽  
Author(s):  
A. K. Bazzaev ◽  
M. Kh. Shkhanukov-Lafishev
2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


Author(s):  
Wei Jiang ◽  
Zhong Chen ◽  
Ning Hu ◽  
Yali Chen

AbstractIn recent years, the study of fractional differential equations has become a hot spot. It is more difficult to solve fractional differential equations with nonlocal boundary conditions. In this article, we propose a multiscale orthonormal bases collocation method for linear fractional-order nonlocal boundary value problems. In algorithm construction, the solution is expanded by the multiscale orthonormal bases of a reproducing kernel space. The nonlocal boundary conditions are transformed into operator equations, which are involved in finding the collocation coefficients as constrain conditions. In theory, the convergent order and stability analysis of the proposed method are presented rigorously. Finally, numerical examples show the stability, accuracy and effectiveness of the method.


2015 ◽  
Vol 65 (1) ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

AbstractIn this paper, we deal with multiple solutions of fractional differential equations with p-Laplacian operator and nonlinear boundary conditions. By applying the Amann theorem and the method of upper and lower solutions, we obtain some new results on the multiple solutions. An example is given to illustrate our results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Alsaedi ◽  
Soha Hamdan ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractThis paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 701 ◽  
Author(s):  
Suphawat Asawasamrit ◽  
Sotiris Ntouyas ◽  
Jessada Tariboon ◽  
Woraphak Nithiarayaphaks

This paper studies the existence and uniqueness of solutions for a new coupled system of nonlinear sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, which include as special cases the well-known symmetric boundary conditions. Banach’s contraction principle, Leray–Schauder’s alternative, and Krasnoselskii’s fixed-point theorem were used to derive the desired results, which are well-illustrated with examples.


2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


Sign in / Sign up

Export Citation Format

Share Document