Quantitative Analysis of X-Ray Spectral Data for a Mixture of Compounds Using Machine-Learning Algorithms

Author(s):  
A. S. Algasov ◽  
S. A. Guda ◽  
A. A. Guda ◽  
Yu. V. Rusalev ◽  
A. V. Soldatov
Author(s):  
Soundariya R.S. ◽  
◽  
Tharsanee R.M. ◽  
Vishnupriya B ◽  
Ashwathi R ◽  
...  

Corona virus disease (Covid - 19) has started to promptly spread worldwide from April 2020 till date, leading to massive death and loss of lives of people across various countries. In accordance to the advices of WHO, presently the diagnosis is implemented by Reverse Transcription Polymerase Chain Reaction (RT- PCR) testing, that incurs four to eight hours’ time to process test samples and adds 48 hours to categorize whether the samples are positive or negative. It is obvious that laboratory tests are time consuming and hence a speedy and prompt diagnosis of the disease is extremely needed. This can be attained through several Artificial Intelligence methodologies for prior diagnosis and tracing of corona diagnosis. Those methodologies are summarized into three categories: (i) Predicting the pandemic spread using mathematical models (ii) Empirical analysis using machine learning models to forecast the global corona transition by considering susceptible, infected and recovered rate. (iii) Utilizing deep learning architectures for corona diagnosis using the input data in the form of X-ray images and CT scan images. When X-ray and CT scan images are taken into account, supplementary data like medical signs, patient history and laboratory test results can also be considered while training the learning model and to advance the testing efficacy. Thus the proposed investigation summaries the several mathematical models, machine learning algorithms and deep learning frameworks that can be executed on the datasets to forecast the traces of COVID-19 and detect the risk factors of coronavirus.


BMC Materials ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Emre Topal ◽  
Zhongquan Liao ◽  
Markus Löffler ◽  
Jürgen Gluch ◽  
Jian Zhang ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 461
Author(s):  
Mujeeb Ur Rehman ◽  
Arslan Shafique ◽  
Kashif Hesham Khan ◽  
Sohail Khalid ◽  
Abdullah Alhumaidi Alotaibi ◽  
...  

This article presents non-invasive sensing-based diagnoses of pneumonia disease, exploiting a deep learning model to make the technique non-invasive coupled with security preservation. Sensing and securing healthcare and medical images such as X-rays that can be used to diagnose viral diseases such as pneumonia is a challenging task for researchers. In the past few years, patients’ medical records have been shared using various wireless technologies. The wireless transmitted data are prone to attacks, resulting in the misuse of patients’ medical records. Therefore, it is important to secure medical data, which are in the form of images. The proposed work is divided into two sections: in the first section, primary data in the form of images are encrypted using the proposed technique based on chaos and convolution neural network. Furthermore, multiple chaotic maps are incorporated to create a random number generator, and the generated random sequence is used for pixel permutation and substitution. In the second part of the proposed work, a new technique for pneumonia diagnosis using deep learning, in which X-ray images are used as a dataset, is proposed. Several physiological features such as cough, fever, chest pain, flu, low energy, sweating, shaking, chills, shortness of breath, fatigue, loss of appetite, and headache and statistical features such as entropy, correlation, contrast dissimilarity, etc., are extracted from the X-ray images for the pneumonia diagnosis. Moreover, machine learning algorithms such as support vector machines, decision trees, random forests, and naive Bayes are also implemented for the proposed model and compared with the proposed CNN-based model. Furthermore, to improve the CNN-based proposed model, transfer learning and fine tuning are also incorporated. It is found that CNN performs better than other machine learning algorithms as the accuracy of the proposed work when using naive Bayes and CNN is 89% and 97%, respectively, which is also greater than the average accuracy of the existing schemes, which is 90%. Further, K-fold analysis and voting techniques are also incorporated to improve the accuracy of the proposed model. Different metrics such as entropy, correlation, contrast, and energy are used to gauge the performance of the proposed encryption technology, while precision, recall, F1 score, and support are used to evaluate the effectiveness of the proposed machine learning-based model for pneumonia diagnosis. The entropy and correlation of the proposed work are 7.999 and 0.0001, respectively, which reflects that the proposed encryption algorithm offers a higher security of the digital data. Moreover, a detailed comparison with the existing work is also made and reveals that both the proposed models work better than the existing work.


2020 ◽  
Vol 250 ◽  
pp. 107064 ◽  
Author(s):  
A. Martini ◽  
S.A. Guda ◽  
A.A. Guda ◽  
G. Smolentsev ◽  
A. Algasov ◽  
...  

CATENA ◽  
2021 ◽  
Vol 197 ◽  
pp. 105003
Author(s):  
Lucas Benedet ◽  
Salvador F. Acuña-Guzman ◽  
Wilson Missina Faria ◽  
Sérgio Henrique Godinho Silva ◽  
Marcelo Mancini ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruijie Huang ◽  
Chenji Wei ◽  
Jian Yang ◽  
Xin Xu ◽  
Baozhu Li ◽  
...  

With the high-speed development of artificial intelligence, machine learning methods have become key technologies for intelligent exploration, development, and production in oil and gas fields. This article presents a workflow analysing the main controlling factors of oil saturation variation utilizing machine learning algorithms based on static and dynamic data from actual reservoirs. The dataset in this study generated from 468 wells includes thickness, permeability, porosity, net-to-gross (NTG) ratio, oil production variation (OPV), water production variation (WPV), water cut variation (WCV), neighbouring liquid production variation (NLPV), neighbouring water injection variation (NWIV), and oil saturation variation (OSV). A data processing workflow has been implemented to replace outliers and to increase model accuracy. A total of 10 machine learning algorithms are tested and compared in the dataset. Random forest (RF) and gradient boosting (GBT) are optimal and selected to conduct quantitative analysis of the main controlling factors. Analysis results show that NWIV is the variable with the highest degree of impact on OSV; impact factor is 0.276. Optimization measures are proposed for the development of this kind of sandstone reservoir based on main controlling factor analysis. This study proposes a reference case for oil saturation quantitative analysis based on machine learning methods that will help reservoir engineers make better decision.


Sign in / Sign up

Export Citation Format

Share Document