The effect of two-phase flow regime on hydrodynamics and mass transfer in a horizontal-tube gas-liquid reactor

1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.

Author(s):  
Hong-Quan Zhang ◽  
Qian Wang ◽  
Cem Sarica ◽  
James P. Brill

In Zhang et al. [1], a unified hydrodynamic model is developed for prediction of gas-liquid pipe flow behavior based on slug dynamics. In this study, the new model is validated with extensive experimental data acquired with different pipe diameters, inclination angles, fluid physical properties, gas-liquid flow rates and flow patterns. Good agreement is observed in every aspect of the two-phase pipe flow.


AIChE Journal ◽  
2017 ◽  
Vol 63 (10) ◽  
pp. 4694-4704 ◽  
Author(s):  
Jisong Zhang ◽  
Andrew R. Teixeira ◽  
Lars Thilo Kögl ◽  
Lu Yang ◽  
Klavs F. Jensen

Author(s):  
Ahmad Fazeli ◽  
Ali Vatani

Two-phase flow pipelines are utilized in simultaneous transferring of liquid and gas from reservoir fields to production units and refineries. In order to obtain the hydraulic design of pipelines, pressure drop and liquid holdup were calculated following pipeline flow regime determination. Two semi-empirical and mechanistical models were used. Empirical models e.g. Beggs & Brill, 1973, are only applicable in certain situations were pipeline conditions are adaptable to the model; therefore we used the Taitel & Dukler, 1976, Baker et al., 1988, Petalas & Aziz, 1998, and Gomez et al., 1999, mechanistical models which are practical in more extensive conditions. The FLOPAT code was designed and utilized which is capable of the determining the physical properties of the fluid by either compositional or non-compositional (black oil) fluid models. It was challenged in various pipeline positions e. g. horizontal, vertical and inclined. Specification of the flow regime and also pressure drop and liquid holdup could precisely be calculated by mechanistical models. The flow regimes considered in the pipeline were: stratified, wavy & annular (Segregated Flow), plug & slug (Intermittent Flow) and bubble & mist (Distributive Flow). We also compared output results against the Stanford Multiphase Flow Database which were used by Petalas & Aziz, 1998, and the effect of the flow rate, pipeline diameter, inclination, temperature and pressure on the flow regime, liquid holdup and pressure drop were studied. The outputs (flow regime, pressure drop and liquid holdup) were comparable with the existing pipeline data. Moreover, by this comparison one may possibly suggest the more suitable model for usage in a certain pipeline.


Author(s):  
Julie E. Steinbrenner ◽  
Eon Soo Lee ◽  
Fu-Min Wang ◽  
Chen Fang ◽  
Carlos H. Hidrovo ◽  
...  

An important function of the gas delivery channels in Proton Exchange Membrane (PEM) fuel cells is the evacuation of liquid water created at the cathode. The resulting two-phase flow can become an obstacle to reactant transport and a source of parasitic losses. The present work examines the behavior of two-phase flow in 500 μm × 500 μm × 60 cm channels with distributed water injection through a porous carbon paper wall to gain understanding of the physics of flows relevant to fuel cell water management challenges. Flow regime maps based on local gas and liquid flow rates are constructed for experimental conditions corresponding to current densities between 0.5 and 1 A/cm2 and stoichiometric coefficients from 1 to 4. Flow structures are analyzed along the entire length of the channel. It is observed that slug flow is favored to plug flow at high air flow rates and low liquid flow rates. Stratified flow dominates at high liquid flow rates. Along the axial flow direction, the flow regime consistently transitions from intermittent to wavy to stable stratified flow. This progression is quantified using a parameter of flow progression which characterizes the degree of development of the two-phase flow toward the stable stratified condition. This parameter is discussed in relation to fuel cell operating conditions. It provides a metric for analyzing liquid water removal mechanisms in the cathode channels of PEM fuel cells.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 223
Author(s):  
Brendon J. Doyle ◽  
Frederic Morin ◽  
Jan B. Haelssig ◽  
Dominique M. Roberge ◽  
Arturo Macchi

This work investigates the impact of fluid (CO2(g), water) flow rates, channel geometry, and the presence of a surfactant (ethanol) on the resulting gas–liquid flow regime (bubble, slug, annular), pressure drop, and interphase mass transfer coefficient (kla) in the FlowPlateTM LL (liquid-liquid) microreactor, which was originally designed for immiscible liquid systems. The flow regime map generated by the complex mixer geometry is compared to that obtained in straight channels of a similar characteristic length, while the pressure drop is fitted to the separated flows model of Lockhart–Martinelli, and the kla in the bubble flow regime is fitted to a power dissipation model based on isotropic turbulent bubble breakup. The LL-Rhombus configuration yielded higher kla values for an equivalent pressure drop when compared to the LL-Triangle geometry. The Lockhart–Martinelli model provided good pressure drop predictions for the entire range of experimental data (AARE < 8.1%), but the fitting parameters are dependent on the mixing unit geometry and fluid phase properties. The correlation of kla with the energy dissipation rate provided a good fit for the experimental data in the bubble flow regime (AARE < 13.9%). The presented experimental data and correlations further characterize LL microreactors, which are part of a toolbox for fine chemical synthesis involving immiscible fluids for applications involving reactive gas–liquid flows.


Volume 3 ◽  
2004 ◽  
Author(s):  
J. Howard Arthur ◽  
Charles D. Morgan ◽  
Cory D. Engelhard ◽  
Berton Austin

In some nuclear power plants, a passive siphon breaking system is used to prevent the spent fuel tank from draining in the event of a break in the vertical leg of the heat exchanger piping. A hole is drilled in the horizontal leg of the piping. When the water level in the tank drops below the pipe level air is sucked into the system. When sufficient air is entrained in the pipe the siphon will break. A model to predict the flow rate in a vertical siphon was developed in reference 1 using the homogeneous flow model. The predicted flow rates were greater than measured flow rates. In order to improve the predictive capability, pressure drop measurements were obtained from ten foot vertical test sections with nominal diameters of 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 inches. Values of the distribution parameter, Co, for the drift flux model were determined from the pressure drop data. When the model of reference 1 is changed from homogeneous flow to drift flux model with the distribution parameter determined from the pressure drop data, good agreement with measured liquid flow rates is obtained. The improved model, along with the correlation for the siphon break condition obtained provides a good method for determining the hole size required to break the siphon. There is a paucity of data for two-phase flow regime transition where the flow is in the downward direction that is typical in a siphon. Flow regime transition data were obtained using the test sections listed above. The flow map of Oshinowo2 et al. gave a reasonable prediction of the transition from bubbly to slug flow. None of the references investigated gave an adequate prediction of the point where the siphon would break. A correlation for the siphon break point was developed.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 883
Author(s):  
Haicheng Lv ◽  
Zhirong Yang ◽  
Jing Zhang ◽  
Gang Qian ◽  
Xuezhi Duan ◽  
...  

Based on the split-and-recombine principle, a millimeter-scale butterfly-shaped microreactor was designed and fabricated through femtosecond laser micromachining. The velocity fields, streamlines and pressure fields of the single-phase flow in the microreactor were obtained by a computational fluid dynamics simulation, and the influence of flow rates on the homogeneous mixing efficiency was quantified by the mixing index. The flow behaviors in the microreactor were investigated using water and n-butanol, from which schematic diagrams of various flow patterns were given and a flow pattern map was established for regulating the flow behavior via controlling the flow rates of the two-phase flow. Furthermore, effects of the two-phase flow rates on the droplet flow behavior (droplet number, droplet size and standard deviation) in the microreactor were investigated. In addition, the interfacial mass transfer behaviors of liquid–liquid flow were evaluated using the standard low interfacial tension system of “n-butanol/succinic acid/water”, where the dependence between the flow pattern and mass transfer was discussed. The empirical relationship between the volumetric mass transfer coefficient and Reynold number was established with prediction error less than 20%.


Author(s):  
Ф.В. Роньшин ◽  
В.В. Чеверда ◽  
Е.А. Чиннов ◽  
О.А. Кабов

AbstractWe have experimentally studied a two-phase flow in a microchannel with a height of 150 μm and a width of 20 mm. Different liquids have been used, namely, a purified Milli-Q water, an 50% aqueous-ethanol solution, and FC-72. Before and after the experiment, the height of the microchannel was controlled, as well as the wettability of its walls and surface tension of liquids. Using the schlieren method, the main characteristics of two-phase flow in wide ranges of gas- and liquid-flow rates have been revealed. The flow regime-formation mechanism has been found to depend on the properties of the liquid used. The flow regime has been registered when the droplets moving along the microchannel are vertical liquid bridges. It has been shown that, when using FC-72 liquid, a film of liquid is formed on the upper channel wall in the whole range of gas- and liquid-flow rates.


1989 ◽  
Vol 111 (2) ◽  
pp. 546-551 ◽  
Author(s):  
G. L. Wedekind ◽  
B. L. Bhatt ◽  
G. L. Roslund

This paper presents the results of an experimental and theoretical investigation of the pressure drop associated with transient two-phase condensing flows involving complete condensation. Utilizing the system mean void fraction model, and the similarity relationships associated with it, an analytical prediction of the transient pressure drop is possible, including a simplified closed-form version. The capability of the proposed theory is demonstrated by comparison with experimental measurements of the transient pressure drop in a horizontal tube condenser following an exponential-type change in the inlet mass flow rate. Good agreement is shown to exist between the predicted and experimental results.


Sign in / Sign up

Export Citation Format

Share Document