scholarly journals Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor

2022 ◽  
pp. annrheumdis-2021-220500
Author(s):  
Changrong Ge ◽  
Sylvia Weisse ◽  
Bingze Xu ◽  
Doreen Dobritzsch ◽  
Johan Viljanen ◽  
...  

ObjectivesRheumatoid arthritis (RA) is an autoimmune disease strongly associated with the major histocompatibility complex (MHC) class II allele DRB1*04:01, which encodes a protein that binds self-peptides for presentation to T cells. This study characterises the autoantigen-presenting function of DRB1*04:01 (HLA-DRA*01:01/HLA-DRB1*04:01) at a molecular level for prototypic T-cell determinants, focusing on a post-translationally modified collagen type II (Col2)-derived peptide.MethodsThe crystal structures of DRB1*04:01 molecules in complex with the peptides HSP70289-306, citrullinated CILP982-996 and galactosylated Col2259-273 were determined on cocrystallisation. T cells specific for Col2259-273 were investigated in peripheral blood mononuclear cells from patients with DRB1*04:01-positive RA by cytofluorometric detection of the activation marker CD154 on peptide stimulation and binding of fluorescent DRB1*0401/Col2259-273 tetramer complexes. The cDNAs encoding the T-cell receptor (TCR) α-chains and β-chains were cloned from single-cell sorted tetramer-positive T cells and transferred via a lentiviral vector into TCR-deficient Jurkat 76 cells.ResultsThe crystal structures identified peptide binding to DRB1*04:01 and potential side chain exposure to T cells. The main TCR recognition sites in Col2259-273 were lysine residues that can be galactosylated. RA T-cell responses to DRB1*04:01-presented Col2259-273 were dependent on peptide galactosylation at lysine 264. Dynamic molecular modelling of a functionally characterised Col2259-273-specific TCR complexed with DRB1*04:01/Col2259-273 provided evidence for differential allosteric T-cell recognition of glycosylated lysine 264.ConclusionsThe MHC-peptide-TCR interactions elucidated in our study provide new molecular insights into recognition of a post-translationally modified RA T-cell determinant with a known dominant role in arthritogenic and tolerogenic responses in murine Col2-induced arthritis.

1999 ◽  
Vol 263 (1) ◽  
pp. 172-180 ◽  
Author(s):  
Toru Mima ◽  
Shiro Ohshima ◽  
Mitsuko Sasai ◽  
Katsuhiro Nishioka ◽  
Masatoshi Shimizu ◽  
...  

2019 ◽  
Author(s):  
Xu Jiang ◽  
Shi-yu Wang ◽  
Chen Zhou ◽  
Jing-hua Wu ◽  
Yu-hao Jiao ◽  
...  

AbstractThe pathogenesis of rheumatoid arthritis (RA), a systemic autoimmune disease characterized by autoreactive T-cell accumulation and pro-inflammatory cytokine overproduction, is unclear. Systematically addressing T-cell receptor (TCR) repertoires of different CD4+ T-cell subsets could help understand RA pathogenesis. Here, peripheral CD4+ T cells from treatment-naïve RA patients and healthy controls were sorted into seven subsets including naïve, effector, central memory, effector memory (EMT), Th1, Th17, and regulatory T cells. T-cell receptor β chain repertoires were then analyzed by next-generation sequencing. We identified T-cell clonal expansion in EMT and Th17 cells, with highly similar TCR repertoires between them. Ex vivo experiments demonstrated the preferred differentiation from EMT to Th17 cells in RA. Moreover, TCR diversity in subsets including Th17 was negatively correlated with RA disease activity indices such as C-reactive protein and erythrocyte sedimentation rate. Thus, shared and abnormally expanded EMT and Th17 TCR repertoires might be pivotal for RA pathogenesis.


1995 ◽  
Vol 756 (1 T-Cell Recept) ◽  
pp. 179-182 ◽  
Author(s):  
R. HINGORANI ◽  
J. MONTEIRO ◽  
R. PERGOLIZZI ◽  
R. FURIE ◽  
E. CHARTASH ◽  
...  

1993 ◽  
Vol 36 (9) ◽  
pp. 1234-1243 ◽  
Author(s):  
Barbara M. Bröker ◽  
Ulf Korthäuer ◽  
Peter Heppt ◽  
Gerd Weseloh ◽  
RÜDiger De La Camp ◽  
...  

1997 ◽  
Vol 185 (9) ◽  
pp. 1641-1650 ◽  
Author(s):  
Ralph A. Tripp ◽  
Ann Marie Hamilton-Easton ◽  
Rhonda D. Cardin ◽  
Phuong Nguyen ◽  
Frederick G. Behm ◽  
...  

The murine γ-herpesvirus 68 has many similarities to EBV, and induces a syndrome comparable to infectious mononucleosis (IM). The frequency of activated CD8+ T cells (CD62Llo) in the peripheral blood increased greater than fourfold by 21 d after infection of C57BL/6J (H-2b) mice, and remained high for at least a further month. The spectrum of T cell receptor usage was greatly skewed, with as many as 75% of the CD8+ T cells in the blood expressing a Vβ4+ phenotype. Interestingly, the Vβ4 dominance was also seen, to varying extents, in H-2k, H-2d, H-2u, and H-2q strains of mice. In addition, although CD4 depletion from day 11 had no effect on the Vβ4 bias of the T cells, the Vβ4+CD8+ expansion was absent in H-2IAb–deficient congenic mice. However, the numbers of cycling cells in the CD4 antibody–depleted mice and mice that are CD4 deficient as a consequence of the deletion of MHC class II, were generally lower. The findings suggest that the IM-like disease is driven both by cytokines provided by CD4+ T cells and by a viral superantigen presented by MHC class II glycoproteins to Vβ4+CD8+ T cells.


Sign in / Sign up

Export Citation Format

Share Document