scholarly journals Essential tremor: diagnosis and management

BMJ ◽  
2019 ◽  
pp. l4485 ◽  
Author(s):  
Vicki Shanker

ABSTRACT Essential tremor is one of the most common movement disorders in adults and can affect both children and adults. An updated consensus statement in 2018 redefined essential tremor as an isolated action tremor present in bilateral upper extremities for at least three years. Tremor may also be present in other locations, commonly the neck or the vocal cords. Patients with additional neurologic symptoms are now categorized as “essential tremor plus.” Additional clinical features associated with the condition include but are not limited to cognitive impairment, psychiatric disorders, and hearing loss. When treatment is needed, propranolol and primidone are considered first line treatments. Patients who are severely affected are often offered deep brain stimulation. Although the ventral intermediate nucleus of the thalamus is the traditional surgical target, the caudal zona incerta is also being studied as a possible superior alternative. Magnetic resonance imaging guided high intensity focused ultrasound is a newer surgical alternative that may be ideal for patients with substantial medical comorbidities. Current research explores novel oral treatments, chemodenervation, and noninvasive neuromodulation for treatment of essential tremor.

2020 ◽  
Vol 10 (12) ◽  
pp. 925
Author(s):  
Christian Iorio-Morin ◽  
Anton Fomenko ◽  
Suneil K. Kalia

Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed.


Brain ◽  
2020 ◽  
Vol 143 (9) ◽  
pp. 2664-2672
Author(s):  
Bhavya R Shah ◽  
Vance T Lehman ◽  
Timothy J Kaufmann ◽  
Daniel Blezek ◽  
Jeff Waugh ◽  
...  

Abstract Magnetic resonance guided high intensity focused ultrasound is a novel, non-invasive, image-guided procedure that is able to ablate intracranial tissue with submillimetre precision. It is currently FDA approved for essential tremor and tremor dominant Parkinson’s disease. The aim of this update is to review the limitations of current landmark-based targeting techniques of the ventral intermediate nucleus and demonstrate the role of emerging imaging techniques that are relevant for both magnetic resonance guided high intensity focused ultrasound and deep brain stimulation. A significant limitation of standard MRI sequences is that the ventral intermediate nucleus, dentatorubrothalamic tract, and other deep brain nuclei cannot be clearly identified. This paper provides original, annotated images demarcating the ventral intermediate nucleus, dentatorubrothalamic tract, and other deep brain nuclei on advanced MRI sequences such as fast grey matter acquisition T1 inversion recovery, quantitative susceptibility mapping, susceptibility weighted imaging, and diffusion tensor imaging tractography. Additionally, the paper reviews clinical efficacy of targeting with these novel MRI techniques when compared to current established landmark-based targeting techniques. The paper has widespread applicability to both deep brain stimulation and magnetic resonance guided high intensity focused ultrasound.


Neurosurgery ◽  
2015 ◽  
Vol 77 (5) ◽  
pp. E831-E837 ◽  
Author(s):  
John D. Rolston ◽  
Alexander D. Ramos ◽  
Susan Heath ◽  
Dario J. Englot ◽  
Daniel A. Lim

Abstract BACKGROUND AND IMPORTANCE: The ventral intermediate nucleus of the thalamus is a primary target of deep brain stimulation (DBS) in patients with essential tremor. Despite reliable control of contralateral tremor, there is sometimes a need for lead revision in cases of infection, hardware malfunction, or failure to relieve symptoms. Here, we present the case of a patient undergoing revision after ventral intermediate nucleus (Vim) DBS failed to control his tremor. During the electrode removal, the distal portion of the lead was found to be tightly adherent to tissue within the deep brain. Partial removal of the electrode in turn caused weakness, paresthesias, and tremor control similar to the effects produced by thalamotomy or thalamic injury. CLINICAL PRESENTATION: A 48-year-old man with essential tremor had bilateral Vim DBS leads implanted 10 years earlier but had poor control of his tremor and ultimately opted for surgical revision with lead placement in the zona incerta. During attempted removal of his right lead, the patient became somnolent with contralateral weakness and paresthesias. The procedure was aborted, and postoperative neuroimaging was immediately obtained, showing no signs of stroke or hemorrhage. The patient had almost complete control of his left arm tremor postoperatively, and his weakness soon resolved. CONCLUSION: To the best of our knowledge, this is the first reported case of cerebral injury after DBS revision and offers insights into the mechanism of high-frequency electric stimulation compared with lesions. That is, although high-frequency stimulation failed to control this patient's tremor, thalamotomy-like injury was completely effective.


2021 ◽  
Vol 134 (1) ◽  
pp. 208-215 ◽  
Author(s):  
Johanna Philipson ◽  
Patric Blomstedt ◽  
Marwan Hariz ◽  
Marjan Jahanshahi

OBJECTIVEThe ventral intermediate nucleus (VIM) of the thalamus is currently the established target in the use of deep brain stimulation (DBS) to treat essential tremor (ET). In recent years, the caudal zona incerta (cZi), a brain target commonly used during the lesional era, has been revived as the primary target in a number of DBS studies that show evidence of the efficacy of cZi targeting in DBS treatment for controlling the symptoms of ET. The authors sought to obtain comprehensive neuropsychological data and thoroughly investigate the cognitive effects of cZi targeting in patients with ET treated with DBS.METHODSTwenty-six consecutive patients with ET who received DBS with cZi as the target at our department from December 2012 to February 2017 were included in this study. All patients were assessed using a comprehensive neuropsychological test battery covering the major cognitive domains both preoperatively and 12 months postoperatively.RESULTSThe results show no major adverse effects on patient performance on the tests of cognitive function other than a slight decline of semantic verbal fluency.CONCLUSIONSThis study indicates that the cZi is a safe target from a cognitive perspective in the treatment of ET with DBS.


2017 ◽  
Vol 5 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Robert S. Eisinger ◽  
Joshua Wong ◽  
Leonardo Almeida ◽  
Adolfo Ramirez-Zamora ◽  
Jackson N. Cagle ◽  
...  

2021 ◽  
Vol 10 (16) ◽  
pp. 3468
Author(s):  
Naomi I. Kremer ◽  
Rik W. J. Pauwels ◽  
Nicolò G. Pozzi ◽  
Florian Lange ◽  
Jonas Roothans ◽  
...  

Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.


2018 ◽  
Vol 129 (Suppl1) ◽  
pp. 63-71 ◽  
Author(s):  
Constantin Tuleasca ◽  
Jean Régis ◽  
Elena Najdenovska ◽  
Tatiana Witjas ◽  
Nadine Girard ◽  
...  

OBJECTIVEEssential tremor (ET) is the most common movement disorder. Drug-resistant ET can benefit from standard stereotactic deep brain stimulation or radiofrequency thalamotomy or, alternatively, minimally invasive techniques, including stereotactic radiosurgery (SRS) and high-intensity focused ultrasound, at the level of the ventral intermediate nucleus (Vim). The aim of the present study was to evaluate potential correlations between pretherapeutic interconnectivity (IC), as depicted on resting-state functional MRI (rs-fMRI), and MR signature volume at 1 year after Vim SRS for tremor, to be able to potentially identify hypo- and hyperresponders based only on pretherapeutic neuroimaging data.METHODSSeventeen consecutive patients with ET were included, who benefitted from left unilateral SRS thalamotomy (SRS-T) between September 2014 and August 2015. Standard tremor assessment and rs-fMRI were acquired pretherapeutically and 1 year after SRS-T. A healthy control group was also included (n = 12). Group-level independent component analysis (ICA; only n = 17 for pretherapeutic rs-fMRI) was applied. The mean MR signature volume was 0.125 ml (median 0.063 ml, range 0.002–0.600 ml). The authors correlated baseline IC with 1-year MR signatures within all networks. A 2-sample t-test at the level of each component was first performed in two groups: group 1 (n = 8, volume < 0.063 ml) and group 2 (n = 9, volume ≥ 0.063 ml). These groups did not statistically differ by age, duration of symptoms, baseline ADL score, ADL point decrease at 1 year, time to tremor arrest, or baseline tremor score on the treated hand (TSTH; p > 0.05). An ANOVA was then performed on each component, using individual subject-level maps and continuous values of 1-year MR signatures, correlated with pretherapeutic IC.RESULTSUsing 2-sample t-tests, two networks were found to be statistically significant: network 3, including the brainstem, motor cerebellum, bilateral thalamus, and left supplementary motor area (SMA) (pFWE = 0.004, cluster size = 94), interconnected with the red nucleus (MNI −2, −22, −32); and network 9, including the brainstem, posterior insula, bilateral thalamus, and left SMA (pFWE = 0.002, cluster size = 106), interconnected with the left SMA (MNI 24, −28, 44). Higher pretherapeutic IC was associated with higher MR volumes, in a network including the anterior default-mode network and bilateral thalamus (ANOVA, pFWE = 0.004, cluster size = 73), interconnected with cerebellar lobule V (MNI −12, −70, −22). Moreover, in the same network, radiological hyporesponders presented with negative IC values.CONCLUSIONSThese findings have clinical implications for predicting MR signature volumes after SRS-T. Here, using pretherapeutic MRI and data processing without prior hypothesis, the authors showed that pretherapeutic network interconnectivity strength predicts 1-year MR signature volumes following SRS-T.


Sign in / Sign up

Export Citation Format

Share Document