scholarly journals 911 Immune profiling reveals enrichment of distinct immune signatures in high-risk oral potentially malignant disorders

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A957-A957
Author(s):  
Chai Gan ◽  
Bernard Kok Bang Lee ◽  
Shin Hin Lau ◽  
Thomas George Kallarakkal ◽  
Zuraiza Mohamad Zaini ◽  
...  

BackgroundPatients with oral potentially malignant disorders (OPMD) having moderate or severe oral epithelial dysplasia (OED) have a greater risk of developing oral squamous cell carcinoma (OSCC) compared to mild OED with an odds ratio of 2.4.1 The involvement of specific immune cell types associated with malignant transformation have been reported, giving rise to clinical trials in immunoprevention. However, the immune landscape of OPMD remains understudied. In this study, we aimed to elucidate the immune landscape of high-risk OPMD by transcriptomic profiling for the identification of potential immunoprevention strategy.MethodsHistological evaluation was performed on hematoxylin and eosin (H&E)-stained tissues to investigate the differences of lymphocyte infiltration in benign lesions (n=16), high-risk OPMD consisted of moderate and severe OED (n=46) and early-stage OSCC (n=6). Formalin-fixed paraffin-embedded tissue sections of selected cases from each sample type were subjected to RNA sequencing. Weighted-gene-correlation network analysis (WGCNA) was used to identify key gene modules expressed in specific disease type.2 The immune landscape of high-risk OPMD was elucidated by the enrichment of immune signatures using single-sample gene set enrichment analysis.3–5 The response of high-risk OPMD to anti-PD1 treatment was predicted by the detection of T-cell-inflamed condition.6 Validation was performed by multiplex immunofluorescent (mIF) staining.ResultsOur H&E evaluation showed that lymphocyte infiltration into the epithelial was seen in 80% of high-risk OPMD and early-stage OSCC, compared to 9% of benign lesion. Gene modules identified from WGCNA analysis revealed that genes involved in immune-related pathways were overexpressed in high-risk OPMD and in early-stage OSCC when compared to benign lesion, but unchanged between high-risk OPMD and early-stage OSCC. We further demonstrated that immune signatures representing lymphocyte infiltration, MHC-I antigen presentation and cytotoxic immune responses were enriched in high-risk OPMD, indicating the presence of immune surveillance. High-risk OPMD can be grouped into the T-cell-inflamed and non-immune reactive subtypes. The T-cell-inflamed subtype is enriched with T cells, interferon signaling and PD-1/PD-L1 immune checkpoint proteins, suggesting that these lesions may be amenable to anti-PD1 treatment. Meanwhile, the non-immune reactive subtype demonstrated low enrichment in signatures for immune cell infiltration, indicating a need of intervention to induce lymphocyte infiltration. Using mIF staining, we observed an increase of CD45+ immune cell population expressing PD-L1 in high-risk OPMD.ConclusionsImmune surveillance is a prominent feature of high-risk OPMD. However, different subsets of high-risk OPMD exist, suggesting a need of different immunoprevention approaches to prevent disease progression which warrants further investigation.AcknowledgementsThis study was supported and funded by the Global Challenge Research Fund by the Medical Research Council, UK (MR/P024351/1) and Cancer Research Malaysia. We thank the Ong Heng Tiang & Ong Sek Pek Foundation for scholarship sponsorship.ReferencesIocca O, Sollecito TP, Alawi F, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 2020;42:539–55.Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559.Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.Chen YP, Wang YQ, Lv JW, et al. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: implications for immunotherapy. Ann Oncol 2019;30:68–75.Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity 2018;48:812–30.Ayers M, Lunceford J, Nebozhyn M, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 2017;127:2930–40.Ethics ApprovalThe use of clinical specimens in this study has been approved by the Medical Ethics Committee, Faculty of Dentistry, University of Malaya [DF OS1624/0073(L)], and The National Medical Research Register, Malaysia [NMRR-16-1764-32566 (IIR)].

2020 ◽  
Author(s):  
Jianfeng Zheng ◽  
Jinyi Tong ◽  
Benben Cao ◽  
Xia Zhang ◽  
Zheng Niu

Abstract Background: Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed. The signature based on immune‐related lncRNAs(IRLs) of CC has never been reported. This study aimed to establish an IRL signature for patients with CC.Methods: The RNA-seq dataset was obtained from the TCGA, GEO, and GTEx database. The immune scores(IS)based on single-sample gene set enrichment analysis (ssGSEA) were calculated to identify the IRLs, which were then analyzed using univariate Cox regression analysis to identify significant prognostic IRLs. A risk score model was established to divide patients into low-risk and high-risk groups based on the median risk score of these IRLs. This was then validated by splitting TCGA dataset(n=304) into a training-set(n=152) and a valid-set(n=152). The fraction of 22 immune cell subpopulations was evaluated in each sample to identify the differences between low-risk and high-risk groups. Additionally, a ceRNA network associated with the IRLs was constructed.Results: A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was included in this study. Twenty-eight IRLs were collected according to the Pearson’s correlation analysis between immune score and lncRNA expression (P < 0.01). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most significant prognostic values (P < 0.05) were identified which demonstrated an ability to stratify patients into low-risk and high-risk groups by developing a risk score model. It was observed that patients in the low‐risk group showed longer overall survival (OS) than those in the high‐risk group in the training-set, valid-set, and total-set. The area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) for the four IRLs signature in predicting the one-, two-, and three-year survival rates were larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA. These IRLs were also significantly correlated with immune cell infiltration. Conclusions: Our results showed that the IRL signature had a prognostic value for CC. Meanwhile, the specific mechanisms of the four-IRLs in the development of CC were ascertained preliminarily.


Author(s):  
Mimansha Patel ◽  
Madhuri Nitin Gawande ◽  
Minal Shashikant Chaudhary ◽  
Alka Harish Hande

Background: “Oral Potentially Malignant Disorder (OPMD)” is a well-known symptom that, if untreated, can be carcinogenic. It includes leukoplakia, erythroplakia or erythroleukoplakia. One of the typical premalignant lesions of the oral cavity is “oral leukoplakias (OLs),” which frequently precedes “OSCCs.”OLs with dysplastic characteristics are considered to be at a higher risk of “malignant transformation.” So, early diagnosis of "oral squamous cell carcinomas (OSCCs)" is desperately required to enhance patient prognosis and quality of life (QOL).As a result, we examined the distinctive promoter methylation presence in high-risk OLs. Objectives: To detect, compare & correlate “DNA methylation” patterns in normal individuals, tobacco users without disease and tobacco users with the disease. Methodology: With the participants' full consent, 48 saliva samples were obtained and prepared. DNA isolation, restriction digestion of genomic DNA, extraction of restriction enzyme digested genomic DNA, Polymerase Chain Reaction (PCR), and Agarose Gel Electrophoresis (AGE) were all carried out. Expected results: This study will help us to assess the use of Saliva as an aid to identifying both high and low risk “Oral Potentially Malignant Disorders.” Conclusion: Peculiar promoter methylation of various genes was related to a high possibility of malignant transformation in OLs.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 558-558 ◽  
Author(s):  
Michael Sangmin Lee ◽  
Benjamin Garrett Vincent ◽  
Autumn Jackson McRee ◽  
Hanna Kelly Sanoff

558 Background: Different immune cell infiltrates into colorectal cancer (CRC) tumors are associated with different prognoses. Tumor-associated macrophages contribute to immune evasion and accelerated tumor progression. Conversely, tumor infiltrating lymphocytes at the invasive margin of CRC liver metastases are associated with improved outcomes with chemotherapy. Cetuximab is an IgG1 monoclonal antibody against epidermal growth factor receptor (EGFR) and stimulates antibody-dependent cellular cytotoxicity (ADCC) in vitro. However, it is unclear in humans if response to cetuximab is modulated by the immune response. We hypothesized that different immune patterns detected in gene expression profiles of CRC metastases are associated with different responses to cetuximab. Methods: We retrieved gene expression data from biopsies of metastases from 80 refractory CRC patients treated with cetuximab monotherapy (GEO GSE5851). Samples were dichotomized by cetuximab response as having either disease control (DC) or progressive disease (PD). We performed gene set enrichment analysis (GSEA) with GenePattern 3.9.4 using gene sets of immunologic signatures obtained from the Molecular Signatures Database v5.0. Results: Among the 68 patients with response annotated, 25 had DC and 43 had PD. In the PD cohort, 59/1910 immunologic gene sets had false discovery rate (FDR) < 0.1. Notably, multiple gene sets upregulated in monocyte signatures were associated with PD. Also, gene sets consistent with PD1-ligated T cells compared to control activated T cells (FDR = 0.052) or IL4-treated CD4 T cells compared to controls (FDR = 0.087) were associated with PD. Conclusions: Cetuximab-resistant patients tended to have baseline increased expression of gene signatures reflective of monocytic infiltrates, consistent with also having increased expression of the IL4-treated T-cell signature. Cetuximab resistance was also associated with increased expression of the PD1-ligated T cell signature. These preliminary findings support further evaluation of the effect of differential immune infiltrates in prognosis of metastatic CRC treated with cetuximab.


2021 ◽  
Author(s):  
Feng Liu ◽  
Zewei Tu ◽  
Junzhe Liu ◽  
Xiaoyan Long ◽  
Bing Xiao ◽  
...  

Abstract Background: A role of DNAJC10 has been reported in several cancers, but its function in glioma is not clear. The purpose of this study was to investigate the prognostic role and the underlying functions of DNAJC10 in glioma.Methods: Reverse transcription and quantitative polymerase chain reaction and western blotting were performed to quantify the relative DNAJC10 mRNA and protein expressions of clinical samples. Wilcoxon rank sum tests were used to compare DNAJC10 expression between or among glioma subgroups with different clinicopathological features. The overall survival (OS) rates of glioma patients with different DNAJC10 expression were compared with the Kaplan-Meier method (two-sided log-rank test). The prognosis-predictive accuracy of the DNAJC10 was evaluated by time-dependent receiver operating characteristic (ROC) curves. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations were conducted using the “clusterProfiler” package. Single-sample gene set enrichment analysis was used to estimate immune cell infiltrations and immune-related function levels. The independent prognostic role of DNAJC10 was determined by univariate and multivariate Cox regression analyses. A DNAJC10-based nomogram model was established using multivariate Cox regression in the R package “rms.” Results: Higher DNAJC10 expression was observed in gliomas. It was upregulated in tumors with higher World Health Organization grade, isocitrate dehydrogenase wild-type status, 1p/19q non-co-deletion, and methylguanine-DNA methyltransferase unmethylated gliomas. Patients with gliomas with higher DNAJC10 expression had poorer prognoses than those with low-DNAJC10 gliomas. The predictive accuracy of 1/3/5-year OS of DNAJC10 was stable and robust using a time-dependent ROC model. Functional enrichment analysis recognized that T cell activation and T cell receptor signaling were enriched in higher DNAJC10 gliomas. Immune cell and stromal cell infiltrations, tumor mutation burden, copy number alteration burden, and immune checkpoint genes were also positively correlated with glioma DNAJC10 expression. A DNAJ10-based nomogram model was established and showed strong prognosis-predictive ability.Conclusion: Higher DNAJC10 expression correlates with poor prognosis of patients with glioma and is a potential and useful prognostic biomarker.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244740
Author(s):  
Tien-En Chiang ◽  
Yu-Chun Lin ◽  
Chi-Tsung Wu ◽  
Cheng-Yu Yang ◽  
Sheng-Tang Wu ◽  
...  

Screening for oral potentially malignant disorders (OPMDs) with dysplasia in high-risk groups is suggested in countries with a high prevalence of the disorders. This study aimed to compare the accuracy of diagnoses of OPMDs with dysplasia made by a primary examiner (general dental clinician) and a specialist (oral and maxillofacial surgeon) using the current Taiwanese Nationwide Oral Mucosal Screening Program (TNOMSP). A total of 134 high-risk participants were enrolled for oral mucosal screening via the TNOMSP. A primary examiner and a specialist examined each participant. Mucosal biopsies were obtained and subjected to histopathological analysis. The OPMD most frequently diagnosed by the primary examiner was thin homogeneous leukoplakia (48/134; 35.8%), and in 39/134 participants (29.1%) the diagnosis was uncertain, but abnormalities were suggested. The OPMDs most frequently diagnosed by the specialist were erythroleukoplakia (23/134; 17.2%) and thin homogeneous leukoplakia (21/134; 15.7%), and 51/134 participants (38.1%) were diagnosed with other diseases. Via histopathology, 70/134 participants (52.3%) were diagnosed with dysplasia, and 58/134 (43.3%) were diagnosed with benign conditions. The specialist’s diagnoses exhibited a higher specificity, positive predictive value, and accuracy than the primary examiners. A specialist using the current TNOMSP for high-risk participants diagnosed OPMDs with dysplasia more accurately than a primary examiner. Early diagnosis of high-risk OPMDs is crucial in countries with a high prevalence of the disorders. Proficient examination via the current TNOMSP by trained clinician is effective for the management of OPMDs with dysplasia.


2021 ◽  
Author(s):  
Chen-jie Qiu ◽  
Xue-bing Wang ◽  
Zi-ruo Zheng ◽  
Chao-zhi Yang ◽  
Kai Lin ◽  
...  

Abstract Background: The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. Methods: Based on pancreatic cancer data obtained from The Cancer Genome Atlas database, we established the prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus datasets and tissue samples obtained from our center were utilized to validate the model. Relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER.Results: The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5) and can be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The prognosis of the low-risk group was significantly better than that of the high-risk group. In the high-risk group, patients treated with chemotherapy had a better prognosis. The nomogram showed that the model was the most important element. Gene set enrichment analysis identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and adherens junction. The prognostic model can also affect the immune cell infiltration, such as macrophages M0, M1, CD4+T cell and CD8+T cell. Conclusion: A ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis can be an important marker and immunotherapy can be a potential therapeutic target for pancreatic cancer.


2021 ◽  
Author(s):  
Ikko Mito ◽  
Hideyuki Takahashi ◽  
Reika Kawabata-Iwakawa ◽  
Shota Ida ◽  
Hiroe Tada ◽  
...  

Abstract Background: Head and neck squamous carcinoma (HNSCC) is highly infiltrated by immune cells, including tumor-infiltrating lymphocytes and myeloid lineage cells. In the tumor microenvironment, tumor cells orchestrate a highly immunosuppressive microenvironment by secreting immunosuppressive mediators, expressing immune checkpoint ligands, and downregulating human leukocyte antigen expression. In the present study, we aimed to comprehensively profile the immune microenvironment of HNSCC using RNA-sequencing (RNA-seq) data obtained from The Cancer Genome Atlas (TCGA) database.Methods: We calculated enrichment scores of 33 immune cell types based on RNA-seq data of HNSCC tissues and adjacent non-cancer tissues. Based on these scores, we performed non-supervised clustering and identified three immune signatures, i.e., cold, lymphocyte, and myeloid/dendritic cell (DC), using clustering results. We then compared the clinical and biological features of the three signatures.Results: Among HNSCC and non-cancer tissues, human papillomavirus (HPV)-positive HNSCCs exhibited the highest scores in various immune cell types, including CD4+ T cells, CD8+ T cells, B cells, plasma cells, basophils, and their subpopulations. Among the three immune signatures, the proportions of HPV-positive tumors, oropharyngeal cancers, early T tumors, and N factor positive cases were significantly higher in the lymphocyte signature than in other signatures. Among the three signatures, the lymphocyte signature showed the longest overall survival (OS), especially in HPV-positive patients, whereas the myeloid/DC signature demonstrated the shortest OS in these patients. Gene set enrichment analysis revealed the upregulation of several pathways related to inflammatory and proinflammatory responses in the lymphocyte signature. The expression of PRF1, IFNG, GZMB, PDCD1, LAG3, CTLA4, HAVCR2, and TIGIT was the highest in the lymphocyte signature. Meanwhile, the expression of PD-1 ligand genes CD274 and PDCD1LG2 was highest in the myeloid/DC signature. Conclusions: Herein, our findings revealed the transcriptomic landscape of the immune microenvironment that closely reflects the clinical and biological significance of HNSCC, indicating that molecular profiling of the immune microenvironment can be employed to develop novel biomarkers and precision immunotherapies for HNSCC.


2021 ◽  
Author(s):  
Jinlong Huo ◽  
Shuang Shen ◽  
Chen Chen ◽  
Rui Qu ◽  
Youming Guo ◽  
...  

Abstract Background: Breast cancer(BC) is the most common tumour in women. Hypoxia stimulates metastasis in cancer and is linked to poor patient prognosis.Methods: We screened prognostic-related lncRNAs(Long Non-Coding RNAs) from the Cancer Genome Atlas (TCGA) data and constructed a prognostic signature based on hypoxia-related lncRNAs in BC.Results: We identified 21 differentially expressed lncRNAs associated with BC prognosis. Kaplan Meier survival analysis indicated a significantly worse prognosis for the high-risk group(P<0.001). Moreover, the ROC-curve (AUC) of the lncRNAs signature was 0.700, a performance superior to other traditional clinicopathological characteristics. Gene set enrichment analysis (GSEA) showed many immune and cancer-related pathways and in the low-risk group patients. Moreover, TCGA revealed that functions including activated protein C (APC)co-inhibition, Cinnamoyl CoA reductase(CCR),check-point pathways, cytolytic activity, human leukocyte antigen (HLA), inflammation-promotion, major histocompatibility complex(MHC) class1, para-inflammation, T cell co-inhibition, T cell co-stimulation, and Type Ⅰ and Ⅱ Interferons (IFN) responses were significantly different in the low-risk and high-risk groups. Immune checkpoint molecules such as ICOS, IDO1, TIGIT, CD200R1, CD28, PDCD1(PD-1), were also expressed differently between the two risk groups. The expression of m6A-related mRNA indicated that YTHDC1, RBM15, METTL3, and FTO were significantly between the high and low-risk groups.Additionally, immunotherapy in patients with BC from the low-risk group yielded a higher frequency of clinical responses to anti-PD-1/PD-L1 therapy or a combination of anti-PD-1/PD-L1and anti-CTLA4 therapies.Except for lapatinib, the results also show that a high-risk score is related to a higher half-maximal inhibitory concentration (IC50) of chemotherapy drugs.Conclusion: A novel hypoxia-related lncRNAs signature may serve as a prognostic model for BC.


2021 ◽  
Author(s):  
Chen-jie Qiu ◽  
Xue-bing Wang ◽  
Zi-ruo Zheng ◽  
Chao-zhi Yang ◽  
Kai Lin ◽  
...  

Abstract Background: With the development of genomics, ferroptosis has been determined to be highly important in cancer. The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. Methods: Based on pancreatic cancer data obtained from The Cancer Genome Atlas (TCGA) database, we employed univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis and multivariate Cox analysis to establish the prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus (GEO) datasets and tissue samples obtained from our center were utilized to validate the prognostic model. Relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER.Results: The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5) and can be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The KM curve indicated that the overall survival (OS) of the low-risk group was significantly better than that of the high-risk group. The nomogram showed that the prognostic model was the most important element. Gene set enrichment analysis (GSEA) identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and adherens junction. GSE57495, GSE62452 and 88 pancreatic cancer tissues from our center were utilized to validate the prognostic model. The prognostic model can also affect the immune cell infiltration, such as macrophages M0, M1, CD4+T cell and CD8+T cell. Conclusion: A ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis can be an important marker and immunotherapy can be a potential therapeutic target for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document