The Stability of Roll Solutions of the Two-Dimensional Swift–Hohenberg Equation and the Phase-Diffusion Equation

1996 ◽  
Vol 27 (5) ◽  
pp. 1311-1335 ◽  
Author(s):  
Masataka Kuwamura
2020 ◽  
Vol 25 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Adel Rashed A. Ali Alsabbagh ◽  
Esraa Abbas Al-taai

The Caputo definition of fractional derivative has been employed for the time derivative for the two-dimensional time-fractional diffusion equation. The stability condition obtained by reformulation the classical multilevel technique on the finite difference scheme. A numerical example gives a good agreement with the theoretical result


Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3609-3626
Author(s):  
Mehran Taghipour ◽  
Hossein Aminikhah

In this paper, a new compact alternating direction implicit (ADI) difference scheme is proposed for the solution of two dimensional time fractional diffusion equation. Theoretical considerations are discussed. We show that the proposed method is fourth order accurate in space and two order accurate in time. The stability and convergence of the compact ADI method are presented by the Fourier analysis method. Numerical examples confirm the theoretical results and high accuracy of the proposed scheme.


In the first part of this paper opportunity has been taken to make some adjustments in certain general formulae of previous papers, the necessity for which appeared in discussions with other workers on this subject. The general results thus amended are then applied to a general discussion of the stability problem including the effect of the trailing wake which was deliberately excluded in the previous paper. The general conclusion is that to a first approximation the wake, as usually assumed, has little or no effect on the reality of the roots of the period equation, but that it may introduce instability of the oscillations, if the centre of gravity of the element is not sufficiently far forward. During the discussion contact is made with certain partial results recently obtained by von Karman and Sears, which are shown to be particular cases of the general formulae. An Appendix is also added containing certain results on the motion of a vortex behind a moving cylinder, which were obtained to justify certain of the assumptions underlying the trail theory.


Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document