Genetic variation in Trillium erectum (Melanthiaceae), a widespread forest herb in eastern North America

2004 ◽  
Vol 82 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Steven R Griffin ◽  
Spencer CH Barrett

Trillium erectum L. is an insect-pollinated understory herb widespread in forests of eastern North America. Marker gene studies indicate that the species has a mixed mating system, but aspects of population genetic structure have not been investigated. Using 10 allozyme loci, we measured genetic variation within and among 23 populations sampled from throughout the species' range. Overall, T. erectum displayed moderate levels of genetic diversity in comparison with other herbaceous plants. The percentage of loci that were polymorphic was 52%, with average values (±SE) of 1.20 ± 0.02, 0.08 ± 0.01, and 0.13 ± 0.01 for the number of alleles per locus (A), observed heterozygosity (Ho), and expected heterozygosity (He), respectively. There was evidence of inbreeding within populations (Fis = 0.39, 95% CI 0.26–0.55) and significant population differentiation (Fst = 0.16, 0.05–0.24). Analysis of genetic data provided no evidence of isolation by distance, and together with the occurrence of population subdivision, this suggests that there is relatively limited contemporary gene flow among populations. Northern populations of T. erectum tended to have less genetic variability than southern populations, probably as a result of historical factors associated with post glacial migration. Limited opportunities for gene dispersal as a result of low plant densities, the capacity for self-fertilization, and local seed dispersal by ants are likely to be the main factors maintaining contemporary patterns of genetic variation in T. erectum. Key words: allozymes, genetic diversity, gene flow, population genetic structure, Trillium.

1988 ◽  
Vol 36 (3) ◽  
pp. 273 ◽  
Author(s):  
DJ Coates

There are 10 known populations of Acacia anomala occurring in two small disjunct groups some 30 km apart. The Chittering populations reproduce sexually whereas the Kalamunda populations appear to reproduce almost exclusively by vegetative multiplication. The level and distribution of genetic variation were studied at 15 allozyme loci. Two loci were monomorphic in all populations. In the Chittering populations the mean number of alleles per locus was 2.0 and the expected panmictic heterozygosity (genetic diversity) 0.209. In the Kalamunda populations the mean number of alleles per locus was 1.15 and the expected panmictic heterozygosity 0.079, although the observed heterozygosity of 0.150 was only marginally less than the Chittering populations (0.177). These data support the contention that the Chittering populations are primarily outcrossing whereas the Kalamunda populations are clonal, with each population consisting of individuals with identical and, in three of the four populations, heterozygous, multilocus genotypes. The level of genetic diversity within the Chittering populations is high for plants in general even though most populations are relatively smsll and isolated. It is proposed that either the length of time these populations have been reduced in size and isolated is insufficient for genetic diversity to be reduced or the genetic system of this species is adapted to small population conditions. Strategies for the adequate conservation of the genetic resources of Acacia anomala are discussed.


2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


The Condor ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Kathryn P. Huyvaert ◽  
Patricia G. Parker

Abstract We used four variable microsatellite loci to examine the distribution of genetic variation and degree of genetic structuring among three subcolonies of Waved Albatrosses (Phoebastria irrorata). The breeding population of this species is almost entirely limited to the island of Española in the Galápagos Archipelago. Such strong philopatry could lead to population genetic structure among subcolonies on the island. Pairwise values of the FST analog, θ, calculated from microsatellite genotypes, were all less than 0.012, indicating little genetic differentiation and the presence of gene flow throughout the population.


2015 ◽  
Vol 106 (1) ◽  
pp. 114-123 ◽  
Author(s):  
X.-T. Tang ◽  
Y. Ji ◽  
Y.-W. Chang ◽  
Y. Shen ◽  
Z.-H. Tian ◽  
...  

AbstractWhile Liriomyza sativae (Diptera: Agromyzidae), an important invasive pest of ornamentals and vegetables has been found in China for the past two decades, few studies have focused on its genetics or route of invasive. In this study, we collected 288 L. sativae individuals across 12 provinces to explore its population genetic structure and migration patterns in China using seven microsatellites. We found relatively low levels of genetic diversity but moderate population genetic structure (0.05 < FST < 0.15) in L. sativae from China. All populations deviated significantly from the Hardy–Weinberg equilibrium due to heterozygote deficiency. Molecular variance analysis revealed that more than 89% of variation was among samples within populations. A UPGMA dendrogram revealed that SH and GXNN populations formed one cluster separate from the other populations, which is in accordance with STRUCTURE and GENELAND analyses. A Mantel test indicated that genetic distance was not correlated to geographic distance (r = −0.0814, P = 0.7610), coupled with high levels of gene flow (M = 40.1–817.7), suggesting a possible anthropogenic influence on the spread of L. sativae in China and on the effect of hosts. The trend of asymmetrical gene flow was from southern to northern populations in general and did not exhibit a Bridgehead effect during the course of invasion, as can be seen by the low genetic diversity of southern populations.


Genome ◽  
2013 ◽  
Vol 56 (6) ◽  
pp. 345-350 ◽  
Author(s):  
Tae-Hwan Jun ◽  
Andrew P. Michel ◽  
Jacob A. Wenger ◽  
Sung-Taeg Kang ◽  
M.A. Rouf Mian

Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of the USA. A few studies have been conducted on the population genetic structure and genetic diversity of the soybean aphid and the source of its invasion in North America. Molecular markers, such as simple sequence repeats (SSRs) are very useful in the evaluation of population structure and genetic diversity. We used 18 SSR markers to assess the genetic diversity of soybean aphid collections from the USA, South Korea, and Japan. The aphids were collected from two sites in the USA (Indiana and South Dakota), two sites in South Korea (Yeonggwang district and Cheonan city), and one site in Japan (Utsunomiya). The SSR markers were highly effective in differentiating among aphid collections from different countries. The level of differentiation within each population and among populations from the same country was limited, even in the case of the USA where the two collection sites were more than 1200 km apart.


2020 ◽  
Author(s):  
Cheng Jin ◽  
Huixia Kao ◽  
Shubin Dong

Abstract BackgroundStudying population genetic structure and gene flow of plant populations and their influence factors is crucial in field of conservation biology, especially rare and endangered plants. Tetraena mongolica Maxim (TM), belong to Zygophyllaceae family, a rare and endangered plant with narrow distribution. Due to excessive logging, urban expansion, industrial development and development of the scenic spot in the last decades, has caused habitat fragments and decline.ResultsIn this study, the genetic diversity, the population genetic structure and gene flow of TM populations were evaluated by reduced representation sequencing technology, a total of more than 133.45 GB high-quality clean reads and 38,097 high-quality SNPs were generated. Analysis based on multiple methods, we found existing TM populations have moderate levels of genetic diversity, very low genetic differentiation and high levels of gene flow between populations. Population structure and principal coordinates analysis showed that 8 TM populations can be divided into two groups, Mantel test detected no significant correlation between geographical distances and genetic distance for the whole sampling. The migration model indicated that the gene flow is more of an north to south migration pattern in history.ConclusionsOur study demonstrate that the present genetic structure is mainly due to habitat fragmentation caused by urban sprawl, industrial development and coal mining. For recommendations of conservation management, all 8 populations should be protected as a whole population, rather than just those in the core area of TM nature reserve, especially the populations near the edge of TM distribution in cities and industrial areas deserve our special protection.


1998 ◽  
Vol 76 (8) ◽  
pp. 1476-1487 ◽  
Author(s):  
Donna M Cherniawsky ◽  
Randall J Bayer

Petasites Mill. (Asteraceae: Senecioneae) is a genus of diploid, perennial, clonal herbs with a widespread distribution across North America. Because of the low variability in floral morphology and high diversity in leaf morphology, considerable taxonomic confusion surrounds the genus. Petasites is generally recognized in North America by five ill-defined native taxa and two introduced species. Enzyme electrophoresis was conducted to assess the genetic variation in Petasites and obtain an understanding of the evolutionary relationships within the genus. Results show divergence at isozyme loci is not associated with morphological divergence. The mean number of alleles per locus and proportion of polymorphic loci are comparable with plants with similar life-history traits; however, levels of heterozygosity ranged substantially. Although there is a weak, negative association between geographical distance and genetic identity, this is not concordant with morphological differences. Typical of clonal species, genetic identities of Petasites are more comparable with selfing plants than with other diploid, outcrossing perennials. Petasites also maintains a level of genetic diversity that is similar to other clonal plants and exhibits high levels of differentiation among its populations. This study provides the first contribution to the population genetic structure of Petasites. The relatively high values of genetic identities between the different taxa of Petasites and the similarity in isozymes and chromosome number indicates a rapid and recent origin in North America. These data, in accordance with the close morphological associations of the four taxa in Petasites, suggest the recognition of one species only, Petasites frigidus.Key words: Petasites, Asteraceae, North America, clonal, systematics, genetic variation.


Author(s):  
Kimberly A. With

Landscape genetics explores how the microevolutionary processes of gene flow, genetic drift, and natural selection interact with environmental heterogeneity to shape population genetic structure. This chapter begins with a review of the various types of genetic data used in population and landscape genetics and discusses how these data are used to estimate genetic variation (heterozygosity) and gene flow among populations. From there, the chapter considers how population genetic structure can be assayed, which then segues into an analysis of the landscape correlates of population genetic structure, the identification of movement corridors and barriers to gene flow, and the relative effects of current versus historical landscape factors on population genetic structure. The chapter concludes with an overview of evolutionary landscape genetics, by considering the adaptive potential of populations in response to future landscape and climatic changes.


2020 ◽  
Author(s):  
Cheng Jin ◽  
Huixia Kao ◽  
Shubin Dong

Abstract Background: Studying population genetic structure and gene flow of plant populations and their influencing factors is of particular significance in the field of conservation biology, especially important for species such as rare and endangered plants. Tetraena mongolica Maxim (TM), belongs to Zygophyllaceae family, a rare and endangered plant with narrow distribution. However, for the last decade, due to excessive logging, urban expansion, industrial and tourism development, habitat fragmentation and loss of natural habitats have become major threats to the population of endangered plants. Results: In this study, genetic diversity, population genetic structure and gene flow of TM populations were evaluated by reduced representation sequencing technology, and a total of more than 133.45 GB high-quality clean reads and 38,097 high-quality SNPs were generated. Analysis based on multiple methods, we found that the existing TM populations have moderate levels of genetic diversity , and very low genetic differentiation as well as high levels of gene flow between populations. Population structure and principal coordinates analysis showed that 8 TM populations can be divided into two groups. The Mantel test detected no significant correlation between geographical distances and genetic distance for the whole sampling. Moreover, the migration model indicated that the gene flow is more of an north to south migration pattern in history. Conclusions: This study demonstrates that the present genetic structure is mainly due to habitat fragmentation caused by urban sprawl, industrial development and coal mining. Our recommendation with respect to conservation management is that, all 8 populations should be preserved as a whole population, rather than just those in the core area of TM nature reserve, In particular, the populations near the edge of TM distribution in cities and industrial areas deserve our special protection.


Sign in / Sign up

Export Citation Format

Share Document