Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon, USAIn this article, mention of companies or trade names does not constitute an endorsement of any product or procedure.

Botany ◽  
2010 ◽  
Vol 88 (8) ◽  
pp. 725-736 ◽  
Author(s):  
R. C. Johnson ◽  
Vicky J. Erickson ◽  
Nancy L. Mandel ◽  
J. Bradley St Clair ◽  
Kenneth W. Vance-Borland

Seed transfer zones ensure that germplasm selected for restoration is suitable and sustainable in diverse environments. In this study, seed zones were developed for mountain brome ( Bromus carinatus Hook. & Arn.) in the Blue Mountains of northeastern Oregon and adjoining Washington. Plants from 148 Blue Mountain seed source locations were evaluated in common-garden studies at two contrasting test sites. Data on phenology, morphology, and production were collected over two growing seasons. Plant traits varied significantly and were frequently correlated with annual precipitation and annual maximum temperature at seed source locations (P < 0.05). Plants from warmer locations generally had higher dry matter production, longer leaves, wider crowns, denser foliage, and greater plant height than those from cooler locations. Regression models of environmental variables with the first two principal components (PC 1 and PC 2) explained 46% and 40% of the total variation, respectively. Maps of PC 1 and PC 2 generally corresponded to elevation, temperature, and precipitation gradients. The regression models developed from PC 1 and PC 2 and environmental variables were used to map seed transfer zones. These maps will be useful in selecting mountain brome seed sources for habitat restoration in the Blue Mountains.

Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 686-694 ◽  
Author(s):  
R.C. Johnson ◽  
Barbara C. Hellier ◽  
Ken W. Vance-Borland

The choice of germplasm is critical for sustainable restoration, yet seed transfer guidelines are lacking for all but a few herbaceous species. Seed transfer zones based on genetic variability and climate were developed using tapertip onion (Allium acuminatum Hook.) collected in the Great Basin and surrounding areas in the United States. Bulbs from 53 locations were established at two common garden sites and morphological (such as leaf and scape dimensions), phenological (such as bolting date and flowering), and production traits (such as emergence and seeds per plant) were measured. Differences among source locations for plant traits within both common gardens were strong (P < 0.001), indicating genetic variation. Principal component 1 (PC 1) for phenological traits, with R2 = 0.59, and PC 1 for production traits, with R2 = 0.65, were consistently correlated with annual, maximum, minimum, and average temperature, annual precipitation, and frost-free days at source locations (P < 0.05). Regression of PC 1 phenology and PC 1 production scores with source location climates resulted in models with R2 values of 0.73 and 0.52, respectively. Using a geographic information system, maps of these models were overlaid to develop proposed seed zones to guide the choice of germplasm for conservation and restoration of tapertip onion across the collection region.


2020 ◽  
Vol 28 (4) ◽  
pp. 911-918
Author(s):  
David Cevallos ◽  
Ákos Bede‐Fazekas ◽  
Eszter Tanács ◽  
Katalin Szitár ◽  
Melinda Halassy ◽  
...  

2008 ◽  
Vol 9 (3) ◽  
pp. 287-302 ◽  
Author(s):  
Barbara L. Wilson ◽  
Dale C. Darris ◽  
Rob Fiegener ◽  
Randy Johnson ◽  
Matthew E. Horning ◽  
...  

2015 ◽  
Vol 35 (1) ◽  
pp. 174-188 ◽  
Author(s):  
Andrea T. Kramer ◽  
Daniel J. Larkin ◽  
Jeremie B. Fant

2017 ◽  
Vol 145 (12) ◽  
pp. 2603-2610 ◽  
Author(s):  
A. MILAZZO ◽  
L. C. GILES ◽  
Y. ZHANG ◽  
A. P. KOEHLER ◽  
J. E. HILLER ◽  
...  

SUMMARYCampylobacterspp. is a commonly reported food-borne disease with major consequences for morbidity. In conjunction with predicted increases in temperature, proliferation in the survival of microorganisms in hotter environments is expected. This is likely to lead, in turn, to an increase in contamination of food and water and a rise in numbers of cases of infectious gastroenteritis. This study assessed the relationship ofCampylobacterspp. with temperature and heatwaves, in Adelaide, South Australia.We estimated the effect of (i) maximum temperature and (ii) heatwaves on dailyCampylobactercases during the warm seasons (1 October to 31 March) from 1990 to 2012 using Poisson regression models.There was no evidence of a substantive effect of maximum temperature per 1 °C rise (incidence rate ratio (IRR) 0·995, 95% confidence interval (95% CI) 0·993–0·997) nor heatwaves (IRR 0·906, 95% CI 0·800–1·026) onCampylobactercases. In relation to heatwave intensity, which is the daily maximum temperature during a heatwave, notifications decreased by 19% within a temperature range of 39–40·9 °C (IRR 0·811, 95% CI 0·692–0·952). We found little evidence of an increase in risk and lack of association betweenCampylobactercases and temperature or heatwaves in the warm seasons. Heatwave intensity may play a role in that notifications decreased with higher temperatures. Further examination of the role of behavioural and environmental factors in an effort to reduce the risk of increasedCampylobactercases is warranted.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 186
Author(s):  
Khishigdelger Enkhtur ◽  
Bazartseren Boldgiv ◽  
Martin Pfeiffer

Geometrids are a species-rich group of moths that serve as reliable indicators for environmental changes. Little is known about the Mongolian moth fauna, and there is no comprehensive review of species richness, diversity, and distribution patterns of geometrid moths in the country. Our study aims to review the existing knowledge on geometrid moths in Mongolia. We compiled geometrid moth records from published scientific papers, our own research, and from the Global Biodiversity Information Facility (GBIF) to produce a checklist of geometrid moths of Mongolia. Additionally, we analyzed spatial patterns, species richness, and diversity of geometrid moths within 14 ecoregions of Mongolia and evaluated environmental variables for their distribution. In total, we compiled 1973-point records of 388 geometrid species. The most species-rich ecoregion in Mongolia was Daurian Forest Steppe with 142 species. Annual precipitation and maximum temperature of the warmest month were the most important environmental variables that correlated with NMDS axes in an analysis of geometrid assemblages of different ecoregions in Mongolia.


2006 ◽  
Vol 3 (2) ◽  
pp. 230-242 ◽  
Author(s):  
Russell Jago ◽  
Tom Baranowski ◽  
Michael Harris

Background:It is not clear if relationships between GIS obtained environmental features and physical activity differ according to the method used to code GIS data.Methods:Physical activity levels of 210 Boy Scouts were measured by accelerometer. Numbers of parks, trails, gymnasia, bus stops, grocery stores, and restaurants within the commonly used 400 m and 1-mile (1609.3 m) buffers of subject residences and distance to the nearest feature were calculated. Residential density, connectivity, and crime rate were calculated. Regression models with minutes of sedentary, light, or moderate-to-vigorous activity as dependent variables and environmental and demographics as independent variables were run with backward deletion of environmental variables.Results:Park, crime, and gym variables were associated with physical activity, but relationships varied according to whether a 400 m, 1 mile, or nearest criteria was used.Conclusion:Environmental variables were associated with the physical activity of adolescent males, but the association was method dependent.


Author(s):  
Pradeep Lall ◽  
Aniket Shirgaokar ◽  
Dineshkumar Arunachalam ◽  
Jeff Suhling ◽  
Mark Strickland ◽  
...  

Goldmann Constants and Norris-Landzberg acceleration factors for lead-free solders have been developed based on principal component regression models (PCR) for reliability prediction and part selection of area-array packaging architectures under thermo-mechanical loads. Models have been developed in conjunction with Stepwise Regression Methods for identification of the main effects. Package architectures studied include, BGA packages mounted on copper-core and no-core printed circuit assemblies in harsh environments. The models have been developed based on thermo-mechanical reliability data acquired on copper-core and no-core assemblies in four different thermal cycling conditions. Packages with Sn3Ag0.5Cu solder alloy interconnects have been examined. The models have been developed based on perturbation of accelerated test thermo-mechanical failure data. Data has been gathered on nine different thermal cycle conditions with SAC305 alloys. The thermal cycle conditions differ in temperature range, dwell times, maximum temperature and minimum temperature to enable development of constants needed for the life prediction and assessment of acceleration factors. Goldmann Constants and the Norris-Landzberg acceleration factors have been benchmarked against previously published values. In addition, model predictions have been validated against validation data-sets which have not been used for model development. Convergence of statistical models with experimental data has been demonstrated using a single factor design of experiment study for individual factors including temperature cycle magnitude, relative coefficient of thermal expansion, and diagonal length of the chip. The predicted and measured acceleration factors have also been computed and correlated. Good correlations have been achieved for parameters examined. Previously, the feasibility of using multiple linear regression models for reliability prediction has been demonstrated for flex-substrate BGA packages [Lall 2004, 2005], flip-chip packages [Lall 2005] and ceramic BGA packages [Lall 2007]. The presented methodology is valuable in the development of fatigue damage constants for the application specific accelerated test data-sets and provides a method to develop institutional learning based on prior accelerated test data.


2013 ◽  
Vol 6 (6) ◽  
pp. 933-948 ◽  
Author(s):  
John Bradley St. Clair ◽  
Francis F. Kilkenny ◽  
Richard C. Johnson ◽  
Nancy L. Shaw ◽  
George Weaver

HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 547-554 ◽  
Author(s):  
Xiaotao Ding ◽  
Yuping Jiang ◽  
Dafeng Hui ◽  
Lizhong He ◽  
Danfeng Huang ◽  
...  

Adequate greenhouse environmental management is very important for improving resource use efficiency and increasing vegetable yield. The objective of this study was to explore suitable climate and cultivation management for cucumber to achieve high yield and build optimal yield models in semi-closed greenhouses. A fruit cucumber cultivar Deltastar was grown over 4 years in greenhouse and weekly data of yields (mean, highest and lowest) and environmental variables, including total radiation, air temperature, relative humidity, and carbon dioxide (CO2) concentration were collected. Regression analyses were applied to develop the relationships and build best regression models of yields with environmental variables using the first 2 years of data. Data collected in years 3 and 4 were used for model validation. Results showed that total radiation, nutrient, temperature, CO2 concentration, and average nighttime relative humidity had significant correlations with cucumber yields. The best regression models fit the mean, lowest, and highest yields very well with R2 values of 0.67, 0.66, and 0.64, respectively. Total radiation and air temperature had the most significant contributions to the variations of the yields. Our results of this study provide useful information for improving greenhouse climate management and yield forecast in semi-closed greenhouses.


Sign in / Sign up

Export Citation Format

Share Document