In situ LA–ICP–MS dating of monazite from aluminous gneisses: insights on the tectono-metamorphic history of a granulite-facies domain in the central Grenville Province

2014 ◽  
Vol 51 (6) ◽  
pp. 558-572 ◽  
Author(s):  
Stephanie Lasalle ◽  
Greg Dunning ◽  
Aphrodite Indares

In situ U–Pb dating of monazite from granulite-facies anatectic aluminous gneisses of the hinterland of the Grenville Province (Manicouagan area) is used to constrain the age of metamorphic events. Matrix grains in these rocks show complex internal textures consistent with extensive corrosion and overgrowths which are attributed to partial dissolution of earlier monazite in anatectic melt followed by new growth during melt crystallization or subsequent fluid infiltration. The new monazite data show the following: (i) inherited “pre-Grevillian” ages up to ca. 1400 Ma in some rocks; (ii) “main Grenvillian” ages in the general range of ca. 1070–1020 Ma, with a variable spread in individual samples and a general cluster at 1070–1050 Ma; and (iii) “late Grenvillian” ages at ca. 1010–990 Ma, mostly restricted to backscatter electron (BSE)-bright rims of matrix grains. The wide age range of the main Grenvillian metamorphism suggests episodic growth of monazite over a wide time span, consistent with protracted residence of the host rocks under high-temperature conditions. The clusters in the age distribution likely represent major episodes of melt crystallization in the respective rocks, following the granulite-facies metamorphism. In contrast, the growth of the late Grenvillian monazite at ca. 1000 Ma is attributed to late fluid infiltration of the host rocks under greenschist-facies conditions, coeval with ultrapotassic magmatism. It is the first report of a late Grenvillian metamorphic overprint on granulite-facies mineral assemblages in the hinterland and is consistent with the model of extensional collapse of the orogen.

Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.


2019 ◽  
Vol 48 (3) ◽  
pp. 49-63
Author(s):  
Milena Georgirva ◽  
Tzvetomila Vladinova

Garnet–clinopyroxene–K-feldspar granulite occurs as a thick layer or boudin within the variegated rocks of the Chepelare shear zone in the Central Rhodope massif, Bulgaria. It consists of several domains: mesocratic homogeneous matrix (clinopyroxene–plagioclase–K-feldspar–quartz ± amphibole), porphyroblastic garnet, K-feldspar and clinopyroxene, and strongly foliated fine-grain bands (chloritized biotite–chlorite–prehnite–albite ± epidote). The origin and nature of the matrix mineral association is still unclear. The peak porphyroblast association forms at the expense of plagioclase from the matrix at higher pressure. The fine-grain deformation zones channel the lattermost fluid infiltration. The clinopyroxene-garnet and Zr-in-titanite thermometry give temperatures higher than 790–860 ºC at 2 GPa and, with thermodynamic modeling, suggests crystallization at ~1.8–2.1 GPa and temperature of ~850 ºC in HP granulite field for the porphyroblast granulite association.


1987 ◽  
Vol 51 (360) ◽  
pp. 207-215 ◽  
Author(s):  
Ram S. Sharma ◽  
Jane D. Sills ◽  
M. Joshi

AbstractMetanorite dykes intrude the Banded Gneiss Complex at various places in Rajasthan, N.W. India. They show neither chilled margins nor gradational contacts with the country rock amphibolite or granulite facies gneisses. They have ophitic to subophitic texture with strongly zoned subcalcic clinopyroxene and orthopyroxene, olivine and plagioclase, with subsidiary biotite. During slow cooling a series of reaction coronas developed with garnet forming round biotite, ilmenite and orthopyroxene; hornblende round pyroxenes and orthopyroxene, hornblende ± spinel round olivine, which may be totally replaced. It is inferred that the dykes crystallised from a tholeiitic magma at about 1100-1150 °C and were intruded during the waning stages of granulite facies metamorphism. The corona minerals grew at about 650–700 °C. A series of reactions to account for the development of the coronas is proposed using measured mineral compositions. Although these reactions do not balance for individual corona formation, metamorphism was probably isochemical with Ca, Na, K, Ti, Si and H2O only mobile on the scale of a thin section. Si and H2O were possibly mobile on a larger scale.


2016 ◽  
Vol 28 (6) ◽  
pp. 487-503 ◽  
Author(s):  
Naomi M. Tucker ◽  
Martin Hand

AbstractThe age and conditions of metamorphism in the Highjump Archipelago, East Antarctica, are investigated using samples collected during the 1986 Australian Antarctic expedition to the Bunger Hills–Denman Glacier region. In situ U-Pb dating of monazite from three metasedimentary rocks yields ages between c. 1240–1150 Ma and a weighted mean 207Pb/206Pb age of 1183±8 Ma, consistent with previous constraints on the timing of metamorphism in this region and Stage 2 of the Albany–Fraser Orogeny in south-western Australia. This age is interpreted to date the development of garnet ± sillimanite ± rutile-bearing assemblages that formed at c. 850–950°C and 6–9 kbar. Peak granulite facies metamorphism was followed by decompression, evidenced largely by the partial replacement of garnet by cordierite. These new pressure–temperature determinations suggest that the Highjump Archipelago attained slightly higher temperature and pressure conditions than previously proposed and that the rocks probably experienced a clockwise pressure–temperature evolution.


2020 ◽  
Author(s):  
Antoine Godet ◽  
Carl Guilmette ◽  
Loic Labrousse ◽  
Matthijs A. Smit ◽  
Donald W. Davis ◽  
...  

<p>Dating the onset of the continental collision and amalgamation of crustal blocks is at the basis of the reconnaissance of orogenic cycles and yields time constraints for the estimate of rates of accretionary processes over the last 4.5 Gyrs. The Paleoproterozoic Southeastern Churchill Province (SECP) represents the easternmost branch of the Trans-Hudson Orogen, squeezed between the Superior and North Atlantic Cratons (NAC). It comprises a collage of Archean to Paleoproterozoic crustal blocks (Core Zone), and two transpressive orogenic belts (New Quebec and Torngat Orogens), for which crustal amalgamation and associated collisional events are largely undated. We apply a multi-chronometer approach coupled with trace elements geochemistry on supracrustal sequences from the granulitic Tasiuyak Complex accretionary prism and the occidental margin of the NAC (upper plate) to estimate the timing of prograde, peak and retrograde metamorphism in the core of the Torngat Orogen. Our results yield to prograde garnet growth at 1885 ± 12 Ma (Lu-Hf), peritectic prograde monazite growth at 1873 ± 5 Ma (U-Pb), retrograde zircon growth during melt crystallization at 1848 ± 12 Ma, and rutile closure during slow exhumation at 1705 ± 5 Ma in the Tasiuyak Complex. Garnet from the NAC are dated at 2567 ± 4.4 Ma (Lu-Hf) and suggest that the granulite facies metamorphism in the NAC margin largely predates the Torngat Orogeny. We integrate the metamorphic record throughout the SECP to decipher its Paleoproterozoic tectonometamorphic evolution and propose a sequential collisional evolution from ~1.9 to 1.8 Ga.</p>


2000 ◽  
Vol 37 (12) ◽  
pp. 1665-1675 ◽  
Author(s):  
Richard A Volkert ◽  
Craig A Johnson ◽  
Albert V Tamashausky

Graphite deposits of Mesoproterozoic age are locally abundant in the eastern New Jersey Highlands, where they are hosted by sulphidic biotite–quartz–feldspar gneiss, metaquartzite, and anatectic pegmatite. Gneiss and metaquartzite represent a shallow marine shelf sequence of locally organic-rich sand and mud. Graphite from massive deposits within metaquartzite yielded δ13C values of –26 ± 2‰ (1σ), and graphite from massive deposits within biotite-quartz-feldspar gneiss yielded δ13C values of –23 ± 4‰. Disseminated graphite from biotite–quartz–feldspar gneiss country rock was –22 ± 3‰, indistinguishable from the massive deposits hosted by the same lithology. Anatectic pegmatite is graphitic only where generated from graphite-bearing host rocks; one sample gave a δ13C value of –15‰. The δ34S values of trace pyrrhotite are uniform within individual deposits, but vary from 0 to 9‰ from one deposit to another. Apart from pegmatitic occurrences, evidence is lacking for long-range mobilization of carbon during Grenvillian orogenesis or post-Grenvillian tectonism. The field, petrographic, and isotope data suggest that massive graphite was formed by granulite-facies metamorphism of Proterozoic accumulations of sedimentary organic matter, possibly algal mats. Preservation of these accumulations in the sedimentary environment requires anoxic basin waters or rapid burial. Anoxia would also favour the accumulation of dissolved ferrous iron in basin waters, which may explain some of the metasediment-hosted massive magnetite deposits in the New Jersey Highlands.


2007 ◽  
Vol 115 (6) ◽  
pp. 691-705 ◽  
Author(s):  
C. J. Forbes ◽  
D. Giles ◽  
P. G. Betts ◽  
R. Weinberg ◽  
P. D. Kinny

1988 ◽  
Vol 25 (11) ◽  
pp. 1895-1905 ◽  
Author(s):  
C. F. Gower ◽  
P. Erdmer

A regional metamorphic gradient from upper greenschist to granulite facies is identified south of the Grenville front in the Double Mer – Lake Melville area of eastern Labrador. Mineral assemblages in politic–granitic gneiss, amphibole-bearing quartzo-feldspathic gneiss, and coronitic metagabbro allow three major metamorphic domains to be established. These are collectively divisible into 11 subdomains. Geothermobarometry applied to the higher grade domains suggests that each is characterized by specific P–T conditions, which achieved 1000–1100 MPa and 700–800 °C in the deepest level rocks.The problem of reconciling geochronological data (which record a major orogenic event at 1650 Ma) with the occurrence of high-grade mineral assemblages in 1426 Ma metagabbro (which suggests a pervasive Grenvillian event) is discussed in terms of three models. The preferred model envisages crustal stabilization at 1650–1600 Ma to give high-grade mineral assemblages seen in the host rocks and with which mineral assemblages in coronitic metagabbro equilibrated after their emplacement at 1426 Ma. During Grenvillian orogenesis (1080–920 Ma) the present structural configuration was achieved by thrust stacking. This imparted a sporadic metamorphic and structural overprint and Grenvillian ages in selected accessory minerals.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 85 ◽  
Author(s):  
Laura Whyatt ◽  
Stefan Peters ◽  
Andreas Pack ◽  
Christopher L. Kirkland ◽  
Tonci Balic-Zunic ◽  
...  

A metasomatic zone formed between the contact of a 2940 ± 5 Ma intrusive trondhjemite sheet in the Archean dunite of the Seqi Ultramafic Complex, SW Greenland, consists of three distinct mineral zones dominated by (1) talc, (2) anthophyllite, and (3) phlogopite. These zones supposedly resulted from a process of dissolution of olivine by silica rich fluid residual from the trondhjemite magma, with crystallization of secondary minerals along a compositional gradient in the fluid phase. A zircon crystal inclusion in a large (4 cm) olivine porphyroblast was dated in situ via LA-ICP-MS U–Pb isotope analysis, yielding a weighted mean 207Pb/206Pb age of 2963 ± 1 Ma, which coincides with granulite facies metamorphism and potential dehydration. Considering phase relations appropriate for the dunite composition, we deduced the talc forming conditions to be at temperatures of 600–650 °C and at a pressure below 1 GPa. This is supported by oxygen isotope data for talc, anthophyllite and phlogopite in the metasomatic zone, which suggests formation in the temperature range of 600–700 °C from fluids that had a δ18O of ~8‰ and a Δ’17O0.528 of about −40 ppm, i.e., from fluids that could have been derived from the late stage trondhjemite sheet.


Sign in / Sign up

Export Citation Format

Share Document