scholarly journals Ligustrum lucidum invasion decreases abundance and relative contribution of soil fauna to litter decomposition but increases decomposition rate in a subtropical montane forest of NW Argentina

Author(s):  
Romina Daiana Fernandez ◽  
María Laura Moreno ◽  
Natalia Pérez Harguindeguy ◽  
Roxana Aragón

Invasive plant species can alter litter decomposition rates through changes in litter quality, environment conditions and decomposer organisms (microflora and soil fauna) but limited research has examined the direct impact on soil fauna. We assessed the abundance and relative contribution of soil meso- and macrofauna to litter decomposition in invaded forest by Ligustrum lucidum and non-invaded forest in a subtropical mountain forest of northwest Argentina using litterbags (0.01, 2 and 6 mm mesh size). Additionally, we analyzed litter quality and soil properties of both forest types. Soil fauna abundance was lower in invaded than in non- invaded forest. The contribution of soil macrofauna to litter decomposition was important in both forest types, but soil mesofauna contribution was only significant in non-invaded forest. Litter decomposition was significantly faster in invaded than in non-invaded forest, consistent with its highest quality. Invaded forest had significantly lower litter accumulation, lower soil moisture and greater soil pH than non-invaded forest. Our results showed that, although soil fauna was less abundant and played a less pronounced role in litter decomposition in invaded forest; these changes did not translate into a reduced litter decomposition rate due to the higher quality of litter produced in the invaded forest.

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12747
Author(s):  
Peng Zan ◽  
Zijun Mao ◽  
Tao Sun

Litter quality and climate have been presumed to be the dominant factors regulating litter decomposition rates on broad spatial scales. However, the role of soil fauna on litter decomposition is poorly understood, despite the fact that it could strongly influence decomposition by fragmentation and subsequent modification of the activities of microorganisms.In this study, we carried out a meta-analysis on the effects of soil fauna on litter decomposition rates in Chinese forests, ranging from boreal to tropical forests, based on data from 20 studies. The effects of climatic factors on decomposition rate were assessed by comparing the contribution of soil fauna to litter decomposition from studies carried out at different latitudes.The degree of influence of the soil fauna was in the order tropical (200%) > subtropical (47%) > temperate forest (28%). Comparing the effect size of soil fauna, it was found that when soil fauna was excluded, the decomposition rate, calculated using Olson’s equation, was most affected in tropical forest (−0.77), while the litter decomposition rate both subtropical (−0.36) and temperate forest (−0.19) were also suppressed to varying degrees (P < 0.001). These results highlight that soil fauna could promote litter decomposition to different extents. Using stepwise multiple linear regression, the effect size of the soil fauna was negatively correlated with the cellulose and nitrogen concentrations of the initial litter material. In Chinese forests, litter decomposition rates were reduced, on average, by 65% when soil fauna was excluded. The impact of soil fauna on decomposition was shown to be closely related to climate and litter quality.


2013 ◽  
Vol 16 (8) ◽  
pp. 1045-1053 ◽  
Author(s):  
Pablo García-Palacios ◽  
Fernando T. Maestre ◽  
Jens Kattge ◽  
Diana H. Wall

2012 ◽  
Vol 518-523 ◽  
pp. 1913-1917
Author(s):  
Fang Qin Guo ◽  
Wei Chen

The effects of N deposition induced by environmental pollution on litter decomposition rate in Shenyang city are analyzed by the reciprocal transplant experiment. By contrasting environments and intraspecific variations in Cortex Phellodendri Chinensis leaf litter quality on mass loss rates to investigate the effects of N deposition on mass loss rates in urban and suburb. The results showed that N deposition in urban significantly affected litter decomposition rate by affecting litter quality and environmental conditions. There was a faster decomposition rate when the environmental conditions or litter quality was affected by N deposition.


2017 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Pranatasari Dyah Susanti ◽  
Wawan Halwany

Penggunaan jenis-jenis tanaman cepat tumbuh diperlukan untuk memenuhi kebutuhan kayu. Meski demikian, informasi mengenai kesuburan tanah kerena penanaman jenis tersebut masih terbatas. Penelitian ini bertujuan mendapatkan data dan informasi mengenai produksi, laju dekomposisi serasah serta keragaman makrofauna tanah pada Hutan Tanaman Industri nyawai (Ficus variegate Blume) dengan tiga kelas umur yang berbeda. Penelitian ini menggunakan metode kuantitatif. Penentuan plot sampel dilakukan secara purposive dengan pertimbangan keterwakilan umur. Variabel yang diamati meliputi jumlah produksi serasah, laju dekomposisi serasah, serta makrofauna tanah menggunakan dua cara yaitu monolith atau pengambilan contoh tanah (PCT) untuk makrofauna tanah yang berada di dalam tanah, serta penggunaan perangkap sumuran (PSM) untuk makrofauna yang berada di permukaan tanah. Hasil penelitian menunjukkan pada tegakan umur 6 tahun memiliki laju dekomposisi serasah terbaik karena sebanyak 48,31% serasah terdekomposisi dengan laju 11%. Pada kelas umur ini keragaman makrofauna juga memiliki nilai tertinggi yaitu 1,08 meskipun masih berada dalam kategori rendah.Kata kunci: dekomposisi; kesuburan tanah; makrofauna; nyawai; serasah Litter Decomposition and Diversity of Soil Macrofauna on Industrial Plantation Forest of NyawaiAbstractThe use of fast-growing tree species is necessary to meet the demand of timber. However, the information with regard the fertility of the soil for planting of these species is still limited. This study aimed to obtain data and information on the litter production and its rate of decomposition as well as soil macrofauna diversity on Industrial Plantation Forest of nyawai (Ficus variegate. Blume) with three different age classes. This study used a quantitative method. Sample plots were determined purposively with consideration of the representation of age. The observed variables included the amount of production of litter, decomposition rate of litter, and soil macrofauna using two methods, i.e. monolith or soil sampling (PCT) for soil macrofauna underground the soil and trap wells (PSM) for macrofauna on soil surface. The results showed in the 6-year-old stands showed the best litter ecomposition rates, since 48.31% of litter was decomposed at a rate of 11%. At this age class, diversity of macrofauna also has the highest score as 1.08, although that value was still in the low category. 


2021 ◽  
Author(s):  
Seyoum Getaneh Aydagnehum ◽  
Olivier Honnay ◽  
Ellen Desie ◽  
Kenny Helsen ◽  
Lisa Couck ◽  
...  

Abstract Background: Attempts to restore degraded highlands by tree planting are common in East Africa. However, up till now, little attention has been given to effects of tree species choice on litter decomposition and nutrient recycling. Method: In this study, three indigenous and two exotic tree species were selected for a litter decomposition study. The objective was to identify optimal tree species combinations and tree diversity levels for the restoration of degraded land via enhanced litter turnover. Litterbags were installed in June 2019 into potential restoration sites (disturbed natural forest and forest plantation) and compared to intact natural forest. The tested tree leaf litters included five monospecific litters, ten mixtures of three species and one mixture of five species. Standard green and rooibos tea were used for comparison. A total of 1033 litters were retrieved for weight loss analysis after one, three, six, and twelve months of incubation. Results: The finding indicates a significant effect of both litter quality and litter diversity on litter decomposition. The nitrogen-fixing native tree Millettia ferruginea showed a comparable decomposition rate as the fast decomposing green tea. The exotic conifer Cupressus lusitanica and the native recalcitrant Syzygium guineense have even a lower decomposition rate than the slowly decomposing rooibos tea. A significant correlation was observed between litter mass loss and initial leaf litter chemical composition. Moreover, we found positive non-additive effects for litter mixtures including nutrient-rich and negative non-additive effects for litter mixtures including poor leaf litters respectively. Conclusion: These findings suggest that both litter quality and litter diversity play an important role in decomposition processes and therefore in the restoration of degraded tropical moist evergreen forest.


Ecology ◽  
2016 ◽  
Vol 97 (10) ◽  
pp. 2834-2843 ◽  
Author(s):  
Weidong Zhang ◽  
Lin Chao ◽  
Qingpeng Yang ◽  
Qingkui Wang ◽  
Yunting Fang ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 371
Author(s):  
Hee Myung Chae ◽  
Sung Hwan Choi ◽  
Sang Hoon Lee ◽  
Sangsub Cha ◽  
Keum Chul Yang ◽  
...  

Litter decomposition involves multiple complex processes, including interactions between the physicochemical characteristics of litter species and various environmental factors. We selected four representative pine species in South Korea (Pinus densiflora Siebold & Zucc., Pinus thunbergii Parl., Pinus koraiensis Siebold & Zucc., and Pinus rigida Miller) to investigate the decay rate and effects of the physicochemical properties on decomposition. Needle litters were incubated in microcosms at 23 °C for 280 days and retrieved four times in about 70-day intervals. The mass loss showed significant differences among the species and was higher in the order of P. densiflora (30.5%), P. koraiensis (27.8%), P. rigida (26.5%), and P. thunbergii (23.6%). The needle litter decomposition showed a negative relationship with the initial surface area, volume, density, cellulose content, and lignin/nitrogen of the litter, and a positive relationship with the initial specific leaf area (SLA), surface-area-to-volume ratio (SA/V), and water- and ethanol-soluble substances. The decomposition rate was highly affected by the physical properties of litter when compared with the initial chemical litter quality, and it was strongly influenced by SLA and SA/V. Accordingly, the physical properties of pine needle litter, especially SLA and SA/V, may be the key factors, and they could be used as predictive indices for the decomposition rate of pine tree litters.


Sign in / Sign up

Export Citation Format

Share Document