Correction: Climate-based allometric biomass equations for five major Canadian timber species

Author(s):  
Kun Xu ◽  
Jinghe Jiang ◽  
Fangliang He
2013 ◽  
Vol 9 (2) ◽  
pp. 7-19 ◽  
Author(s):  
Auristela Dos Santos Conserva ◽  
Denise Garcia de Santana ◽  
Maria Teresa Fernandez Piedade

2015 ◽  
Vol 41 (2) ◽  
pp. 15-24
Author(s):  
Beatriz Duguy Pedra ◽  
Jesus Godoy Puertas ◽  
Laura Fuentes Lopez

2021 ◽  
Vol 489 ◽  
pp. 119050
Author(s):  
Tarin Toledo-Aceves ◽  
Alma L. Trujillo-Miranda ◽  
Fabiola López-Barrera

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 261
Author(s):  
Alexander Cotrina Sánchez ◽  
Nilton B. Rojas Briceño ◽  
Subhajit Bandopadhyay ◽  
Subhasis Ghosh ◽  
Cristóbal Torres Guzmán ◽  
...  

The increasing demand for tropical timber from natural forests has reduced the population sizes of native species such as Cedrela spp. because of their high economic value. To prevent the decline of population sizes of the species, all Cedrela species have been incorporated into Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The study presents information about the modeled distribution of the genus Cedrela in Peru that aims to identify potential habitat distribution of the genus, its availability in areas protected by national service of protected areas, and highlighted some areas because of their conservation relevance and the potential need for restoration. We modeled the distribution of the genus Cedrela in Peru using 947 occurrence records that included 10 species (C. odorata, C. montana, C. fissilis, C. longipetiolulata, C. angustifolia, C. nebulosa, C. kuelapensis, C. saltensis, C. weberbaueri, and C. molinensis). We aim to identify areas environmentally suitable for the occurrence of Cedrela that are legally protected by the National Service of Protected Areas (PAs) and those that are ideal for research and restoration projects. We used various environmental variables (19 bioclimatic variables, 3 topographic factors, 9 edaphic factors, solar radiation, and relative humidity) and the maximum entropy model (MaxEnt) to predict the probability of occurrence. We observed that 6.7% (86,916.2 km2) of Peru presents a high distribution probability of occurrence of Cedrela, distributed in 17 departments, with 4.4% (10,171.03 km2) of the area protected by PAs mainly under the category of protection forests. Another 11.65% (21,345.16 km2) of distribution covers areas highly prone to degradation, distributed mainly in the departments Ucayali, Loreto, and Madre de Dios, and needs immediate attention for its protection and restoration. We believe that the study will contribute significantly to conserve Cedrela and other endangered species, as well as to promote the sustainable use and management of timber species as a whole.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 752
Author(s):  
Yichen Zhou ◽  
Zengxin Zhang ◽  
Bin Zhu ◽  
Xuefei Cheng ◽  
Liu Yang ◽  
...  

Cunninghamia lanceolata (Lamb.) Hook. (Chinese fir) is one of the main timber species in Southern China, which has a wide planting range that accounts for 25% of the overall afforested area. Moreover, it plays a critical role in soil and water conservation; however, its suitability is subject to climate change. For this study, the appropriate distribution area of C. lanceolata was analyzed using the MaxEnt model based on CMIP6 data, spanning 2041–2060. The results revealed that (1) the minimum temperature of the coldest month (bio6), and the mean diurnal range (bio2) were the most important environmental variables that affected the distribution of C. lanceolata; (2) the currently suitable areas of C. lanceolata were primarily distributed along the southern coastal areas of China, of which 55% were moderately so, while only 18% were highly suitable; (3) the projected suitable area of C. lanceolata would likely expand based on the BCC-CSM2-MR, CanESM5, and MRI-ESM2-0 under different SSPs spanning 2041–2060. The increased area estimated for the future ranged from 0.18 to 0.29 million km2, where the total suitable area of C. lanceolata attained a maximum value of 2.50 million km2 under the SSP3-7.0 scenario, with a lowest value of 2.39 million km2 under the SSP5-8.5 scenario; (4) in combination with land use and farmland protection policies of China, it is estimated that more than 60% of suitable land area could be utilized for C. lanceolata planting from 2041–2060 under different SSP scenarios. Although climate change is having an increasing influence on species distribution, the deleterious impacts of anthropogenic activities cannot be ignored. In the future, further attention should be paid to the investigation of species distribution under the combined impacts of climate change and human activities.


2021 ◽  
pp. 096703352199911
Author(s):  
SR Shukla ◽  
S Shashikala ◽  
M Sujatha

Near infrared (NIR) spectroscopy is developing as an advanced and non-invasive tool in the wood, wood products and forestry sectors. It may be applied as a rapid and cost effective technique for assessment of different wood quality parameters of timber species. In the present study, NIR spectra of heartwood samples of Tectona grandis (teak) were collected before measuring fibre morphological parameters (fibre length, fibre diameter and fibre lumen diameter)and main chemical constituents (cellulose, hemicellulose, lignin and extractives) using maceration and wet chemistry methods respectively. Multivariate partial least squares (PLS) regression was applied to develop the calibration models between measured values of wood parameters and NIR spectral data. Pre-processing of NIR spectra demonstrated better predictions based on higher values of correlation coefficient for estimation (R2), validation (Rcv 2 ), ratio of performance to deviation (RPD), and lower values of root mean square errors of estimation (RMSEE), cross-validation (RMSECV) and number of latent variable (rank). Internal cross-validation was used to find the optimum rank. Robust calibrations models with high R2 (>0.87), low errors and high RPD values (> 2.93) were observed from PLS analysis for fibre morphological parameters and main chemical constituents of teak. These linear models may be applied for rapid and cost effective estimation of different fibre parameters and chemical constituents in routine testing and evaluation procedures for teak.


Sign in / Sign up

Export Citation Format

Share Document