scholarly journals Tripartite entanglement and non-locality in three-qubit Greenberger–Horne–Zeilinger states with bit-flip noise

2019 ◽  
Vol 97 (3) ◽  
pp. 248-251 ◽  
Author(s):  
Jia-Qiang Zhao ◽  
Lian-Zhen Cao ◽  
Yang Yang ◽  
Ying-De Li ◽  
Huai-Xin Lu
2021 ◽  
Author(s):  
Kwang-Il Kim ◽  
Myong Chol Pak ◽  
Tae-Hyok Kim ◽  
Jong Chol Kim ◽  
Yong-Hae Ko ◽  
...  

Abstract We investigate robustness of bipartite and tripartite entangled states for fermionic systems in non-inertial frames, which are under noisy channels. We consider two Bell states and two Greenberger-Horne-Zeilinger (GHZ) states, which possess initially the same amount of entanglement, respectively. By using genuine multipartite (GM) concurrence, we analytically derive the equations that determine the difference between the robustness of these locally unitarily equivalent states under the amplitude-damping channel. We find that tendency of the robustness for two GHZ states evaluated by using three-tangle τ and GM concurrence as measures of genuine tripartite entanglement is equal to each other. We also find that the robustness of two Bell states is equal to each other under the depolarizing, phase damping and bit flip channels, and that the same is true for two GHZ states.


Author(s):  
Kwang-Il Kim ◽  
Myong Chol Pak ◽  
Son A Kim ◽  
Jin Ju Ri ◽  
Tae-Hyok Kim

In this paper, we investigate the decoherence of GHZ state under three noisy channels in non-inertial frames. The phase flip, the bit flip and the phase damping channels are considered as noisy channels, respectively. By using three-tangle [Formula: see text] as the measurement of entanglement, we numerically calculate the genuine tripartite entanglement of GHZ state under noisy environments in non-inertial frames. Unlike the case of phase damping channel, in the cases of the phase flip and the bit flip ones, we find that the effect of environment cannot only decay the genuine tripartite entanglement, but also revive it.


2015 ◽  
Vol 5 (2) ◽  
pp. 34-39
Author(s):  
Palagani Yellappa ◽  
◽  
Mareddi Bharathkumar ◽  
Shaik Shabana Azmi ◽  
◽  
...  
Keyword(s):  

Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


Author(s):  
Sandip Tiwari

Unique nanoscale phenomena arise in quantum and mesoscale properties and there are additional intriguing twists from effects that are classical in origin. In this chapter, these are brought forth through an exploration of quantum computation with the important notions of superposition, entanglement, non-locality, cryptography and secure communication. The quantum mesoscale and implications of nonlocality of potential are discussed through Aharonov-Bohm effect, the quantum Hall effect in its various forms including spin, and these are unified through a topological discussion. Single electron effect as a classical phenomenon with Coulomb blockade including in multiple dot systems where charge stability diagrams may be drawn as phase diagram is discussed, and is also extended to explore the even-odd and Kondo consequences for quantum-dot transport. This brings up the self-energy discussion important to nanoscale device understanding.


Author(s):  
Craig Callender

Two of quantum mechanics’ more famed and spooky features have been invoked in defending the idea that quantum time is congenial to manifest time. Quantum non-locality is said by some to make a preferred foliation of spacetime necessary, and the collapse of the quantum wavefunction is held to vindicate temporal becoming. Although many philosophers and physicists seek relief from relativity’s assault on time in quantum theory, assistance is not so easily found.


Sign in / Sign up

Export Citation Format

Share Document