Inhibition of dipeptidyl peptidase-4 averts Free Fatty acids deposition in the hearts of oral estrogen-progestin contraceptive-induced hyperinsulinemic female rats

Author(s):  
Tolulope Eniola Omolekulo ◽  
Isaiah Woru Sabinari ◽  
Emmanuel Damilare Areola ◽  
Folasade O Ajao ◽  
Olayinka Olawale Asafa ◽  
...  

Free fatty acids deposition in non-adipose tissues such as the heart is a characteristic of insulin resistant states which features hyperinsulinemia and dipeptidyl peptidase-4 (DPP-4) activation. Estrogen-progestin oral contraceptives (OC) treatment reportedly increased DPP-4 activity in rat tissue and DPP-4 inhibitors have anti-diabetic and anti-inflammatory properties. This study aims to investigate the effects of DPP-4 inhibition on cardiac free fatty acid (FFA) deposition in estrogen-progestin treated female rats.From our data, estrogen-progestin OC exposure in female rats led to elevated plasma insulin, cardiac DPP-4 activity, FFA and triglyceride (TG) accumulation, Triglyceride/high density lipoprotein (TG/HDL) ratio, adenosine deaminase/xanthine oxidase/uric acid pathway, lipid peroxidation, glycogen synthase activity and alanine phosphatase whereas cardiac glucose-6-phosphate dehydrogenase, Na/K-ATPase and nitric oxide (NO) were decreased. However, DPP-4 inhibition resulted in decreased plasma insulin, cardiac DPP-4 activity, FFA, TG and TG/HDL-C ratio and alkaline phosphatase. These were accompanied by reduced adenosine deaminase/xanthine oxidase/uric acid (ADA/XO/UA) pathway, lipid peroxidation and augmented NO and Na/K-ATPase in estrogen-progestin OC-treated rats.DPP-4 inhibition attenuated cardiac lipid deposition accompanied by reduced activity in the ADA/XO/UA pathway in estrogen-progestin OC-treated female rats. DPP-4 is therefore a plausible therapeutic target in cardiometabolic disorders

1997 ◽  
Vol 78 (5) ◽  
pp. 805-813 ◽  
Author(s):  
Kjell Holtenius ◽  
Paul Holtenius

The metabolic effects of a phlorizin-induced drainage of glucose were studied in six lactating ewes with or without peroral alanine drenches in a study of crossover design. Phlorizin gave rise to a small, but significant, elevation of plasma β-hydroxybutyrate. The plasma level of alanine decreased by about 30 % due to the phlorizin injections and alanine was negatively correlated to β-hydroxybutyrate. The plasma level of free fatty acids increased due to phlorizin. Plasma insulin and glucose concentrations were not significantly affected by phlorizin while glucagon level showed a small but significant increase. Peroral alanine drenches to phlorizin-treated ewes gave rise to a transitory elevation of alanine in plasma. The plasma level of free fatty acids was about 40 % lower in phlorizin-treated ewes receiving alanine and β-hydroxybutyrate tended to be lower (P < 0.08). We suggest that β-hydroxybutyrate, apart from its function as an oxidative fuel, might play an important role by limiting glucose oxidation and protein degradation in skeletal muscles during periods of negative energy balance in ruminants. Furthermore, it is suggested that alanine supplementation decreases lipolysis and ketogenesis in lactating ewes.


1971 ◽  
Vol 125 (2) ◽  
pp. 541-544 ◽  
Author(s):  
R. A. Hawkins ◽  
K. G. M. M. Alberti ◽  
C. R. S. Houghton ◽  
D. H. Williamson ◽  
H. A. Krebs

1. Sodium acetoacetate was infused into the inferior vena cava of fed rats, 48h-starved rats, and fed streptozotocin-diabetic rats treated with insulin. Arterial blood was obtained from a femoral artery catheter. 2. Acetoacetate infusion caused a fall in blood glucose concentration in fed rats from 6.16 to 5.11mm in 1h, whereas no change occurred in starved or fed–diabetic rats. 3. Plasma free fatty acids decreased within 10min, from 0.82 to 0.64mequiv./l in fed rats, 1.16 to 0.79mequiv./l in starved rats and 0.83 to 0.65mequiv./l in fed–diabetic rats. 4. At 10min the plasma concentration rose from 20 to 49.9μunits/ml in fed unanaesthetized rats and from 6.4 to 18.5μunits/ml in starved rats. There was no change in insulin concentration in the diabetic rats. 5. Nembutal-anaesthetized fed rats had a more marked increase in plasma insulin concentration, from 30 to 101μunits/ml within 10min. 6. A fall in blood glucose concentration in fed rats and a decrease in free fatty acids in both fed and starved rats is to be expected as a consequence of the increase in plasma insulin. 7. The fall in the concentration of free fatty acids in diabetic rats may be due to a direct effect of ketone bodies on adipose tissue. A similar effect on free fatty acids could also be operative in normal fed or starved rats.


2008 ◽  
Vol 86 (9) ◽  
pp. 643-649 ◽  
Author(s):  
Thomas P. Johnston ◽  
David J. Waxman

Poloxamer 407 (P-407) is a copolymer surfactant that induces a dose-controlled dyslipidemia in both mice and rats. Human macrophages cultured with P-407 exhibit a concentration-dependent reduction in cholesterol efflux to apolipoprotein A1 (apoA1) linked to downregulation of the ATP-binding cassette transporter A1 (ABCA1). Activators of peroxisome proliferator-activated receptor gamma (PPARγ), as well as PPARα, increase expression of liver X receptor alpha (LXRα) in macrophages and promote the expression of ABCA1, which, in turn, mediates cholesterol efflux to apoA1. The present study investigated whether P-407 interferes with this signaling pathway. A transactivation assay was used to evaluate whether P-407 can either activate or inhibit the transcriptional activity of PPARγ. Because thiazolidinedione drugs (PPARγ agonists) improve glycemic control in type 2 diabetes by reducing blood glucose concentrations, P-407 was also evaluated for its potential to alter plasma insulin and blood glucose concentrations in wild-type (C57BL/6) and PPARγ-deficient mice. Additionally, because thiazolidinediones attenuate release of free fatty acids (FFAs) from adipocytes and, consequently, decrease circulating plasma levels of FFAs, plasma concentrations of circulating FFAs were also determined in P-407-treated mice. P-407 was unable to modulate PPARγ activity in cell-based transactivation assays. Furthermore, P-407 did not perturb plasma insulin and blood glucose concentrations after administration to mice. However, by an as yet unidentified mechanism, P-407 caused a significant increase in the serum concentration of FFAs in mice beginning 3 h after administration and lasting more than 24 h postdosing. It is concluded that P-407 does not interfere with the functional activity of PPARγ after administration to mice.


Sign in / Sign up

Export Citation Format

Share Document