Rh glycoprotein immunoreactivity in the skin and its role in extrabranchial ammonia excretion by the sea lamprey (Petromyzon marinus) in fresh water
Aquatic organisms employ various strategies to excrete ammonia across the gills, skin, and (or) renal routes. During three different stages of their life cycle, we hypothesized that the basal vertebrate sea lamprey (Petromyzon marinus L., 1758) used the skin as a route for ammonia excretion. Measurements of ammonia excretion using divided flux chambers revealed that extrabranchial sites (skin plus renal) of ammonia excretion were quantitatively more important in larval sea lampreys, but following metamorphosis, the gills became the dominant route of excretion in juvenile sea lampreys. Despite the greater relative importance of the skin in the larval stage, Rh glycoprotein isoforms Rhbg, Rhcg1, and Rhcg2 were detected in the skin in all three sea lamprey life stages examined, but the patterns of expression were dependent on the life stage. We conclude that, during the relatively sedentary filter-feeding larval stage, extrabranchial routes play an equally important role as the gill in facilitating ammonia excretion. However, the gills by virtue of their extensive branchial vasculature become the dominant route of ammonia excretion following metamorphosis because of the need to offload greater amounts of ammonia arising from higher rates of basal ammonia production and the potential to excrete higher amounts of ammonia following ingestion of protein-rich blood in the parasitic stage.