Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers

Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.

Author(s):  
Indu Rialch ◽  
Rama Kalia ◽  
H. K. Chaudhary ◽  
B. Kumar ◽  
J. C. Bhandari ◽  
...  

Ten morpho-agronomic traits and 80 random amplified polymorphic DNA (RAPD) molecular markers were used to survey genetic diversity in 25 chickpea genotypes. Analysis of variance revealed significant variability among different genotypes for morpho-metric traits. The cluster analysis done using morpho-metric traits grouped 25 genotypes into seven and six clusters in Environment I (Env. I) and Environment II (Env. II), respectively. Three genotypes viz., ICCV-96904, HPG-17, ICCV-95503 and L-HR-1 belonging to diverse clusters were identified divergent and may use in heterosis breeding programme. Of 80 random RAPD markers, 25 were found polymorphic. Three major clusters were identified using 25 polymorphic RAPD markers. The genetic similarity coefficient among genotypes ranged from 0.57 to 0.91. The average polymorphic information content (PIC) for 25 RAPD markers ranges from 0.12 to 0.40. D2-statistic, RAPD analysis and study of genotypes performance revealed sufficient genetic diversity among chickpea genotypes which would be useful in future breeding programme.


HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1191-1197 ◽  
Author(s):  
S. Jorge ◽  
M.C. Pedroso ◽  
D.B. Neale ◽  
G. Brown

Random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic similarities between Portuguese Camelliasinensis (L.) O. Kuntze (tea plant) accessions and those obtained from the germplasm collections from the Tea Research Foundation of Kenya and from the National Research Institute of Vegetables, Ornamental Plants, and Tea of Japan. The accessions studied are taxonomically classified as C. sinensis, var. sinensis, var. assamica, or ssp. lasiocalyx. A set of 118 ten-base arbitrary primers was tested, of which 25 produced informative, reproducible, and polymorphic banding patterns. These primers were used to amplify DNA from 71 tea plant accessions and produced a total of 282 bands, of which 195 were polymorphic. The phenotypic frequencies were calculated using Shannon's Index and employed in estimating genetic diversity within tea plant populations. Our study demonstrates that tea plant populations, including the Portuguese tea plants, show considerable genetic variability. From the UPGMA cluster analysis based on a matrix using the Jaccard coefficient, it was possible to distinguish the Portuguese tea plants from the remaining accessions. The RAPD markers discriminated the three C. sinensis varieties. Moreover, within each variety cluster, subclusters formed according to geographic distribution. The RAPD analysis also separated the commercially cultivated tea plants from the Taiwanese wild tea plants. The present results show that RAPD analysis constitutes a good method to estimate genetic diversity within C. sinensis, and to differentiate C. sinensis accessions according to taxonomic variety and geographical distribution.


2005 ◽  
Vol 48 (4) ◽  
pp. 511-521 ◽  
Author(s):  
Leandro Eugênio Cardamoni Diniz ◽  
Claudete de Fátima Ruas ◽  
Valdemar de Paula Carvalho ◽  
Fabrício Medeiros Torres ◽  
Eduardo Augusto Ruas ◽  
...  

The genetic variability of 40 accessions of_C. arabica was evaluated using a combination of the random amplified polymorphic DNA (RAPD) technique and restriction digestion of genomic DNA. The genetic variability and the relatedness among all accessions were initially evaluated using 195 RAPD primers which revealed a very low level of genetic variation. To improve the efficiency in the detection of polymorphism, the genomic DNA of all accessions were submitted to digestion with restriction endonucleases prior to PCR amplification. A total of 24 primers combined with restriction digestion of DNA rendered 318 bands, of which 266 (83.65%) were polymorphic. The associations among genotypes were estimated using UPGMA-clustering analysis. The accessions were properly clustered according to pedigree and agronomic features. The ability to distinguish among coffee accessions was greater for RAPD plus restriction digestion than for RAPD alone, providing evidences that the combination of the techniques was very efficient for the estimation of genetic relationship among_C. arabica genotypes.


2014 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Budi Martono ◽  
Laba Udarno

<p>Informasi keragaman genetik dan ketersediaan plasma nutfah teh (Camellia sinensis) diperlukan dalam perakitan varietas unggul. Keragaman genetik berdasarkan penanda DNA dapat memberikan hasil yang lebih konsisten karena tidak dipengaruhi lingkungan. Dalam penelitian ini sebanyak 9 genotipe teh dianalisis keragamannya menggunakan enam penanda RAPD (OPA 03, OPA 05, OPB 04, OPB 06, OPC 06, dan OPD 08). Penelitian dilakukan mulai bulan Maret sampai Mei 2013 di Laboratorium Terpadu Biotrop Bogor. Perhitungan koefisien kesamaan genetik dan analisis gerombol dilakukan dengan menggunakan perangkat lunak NTSYSpc versi 2.02. Sebanyak 54 lokus penanda RAPD berhasil diamplifikasi menggunakan enam primer dan 47 lokus di antaranya memiliki alel yang polimorfik (87,04%). Hasil analisis gerombol berdasarkan kesamaan genetiknya mengelompokkan 9 genotipe ke dalam enam kelompok. Empat kelompok (I, II, IV, V) masing-masing terdiri atas satu genotipe, sementara dua kelompok yang lain yaitu kelompok III dan VI masing-masing beranggotakan tiga dan dua genotipe.</p><p>Kata Kunci: Camellia sinensis, diversitas genetik, penanda RAPD</p><p>The availability of diverse tea (Camellia sinensis) germplasms as well as the information about their genetic diversity is required for plant breeding program. Genetic diversity analysis based on DNA marker is known to be more effective since the markers provide more consistent results. In this study, nine tea genotypes were evaluated for their genetic diversity using six Random Amplified Polymorphic DNA (RAPD) markers (OPA 03, OPA 05, OPB 04, OPB 06, OPC 06, and OPD 08). The study was conducted from March to May 2013 in the Integrated Laboratory of Biotrop Bogor. The estimation of genetic similarity and the cluster analysis were done using NTSYSpc version 2.02. Of the six RAPD markers used in this study, a total of 54 RAPD marker loci have been successfully amplified. In which, 47 loci (87.04%) were polymorphic and subsequently used for the evaluation of tea genotypes. The results of cluster analysis showed that those tea genotypes were clustered into six groups. Each of four groups (I, II, IV, V) consisted of only one genotype. Meanwhile, the other two groups (III and VI) had three and two genotypes, respectively.</p>


2013 ◽  
Vol 6 (1-2) ◽  
pp. 51-63
Author(s):  
SM Faisal ◽  
MS Haque ◽  
KM Nasiruddin ◽  
MM Islam ◽  
MA Shrafuzzaman ◽  
...  

Genetic variability among the genotypes of any species could be utilized for its improvement. PCR-based Random Amplified Polymorphic DNA (RAPD) technique was used to determine the genetic diversity and relationship among 10 cucumber varieties and genotypes. Five decamer primers were used to amplify genomic DNA and the primers yielded a total of 54 bands of which 36 bands were polymorphic and 18 bands were monomorphic. The UPGMA dendrogram based on Nei’s (1972) genetic distance indicated segregation of 10 cucumber varieties and genotypes into two main clusters. Variety Joti alone grouped in cluster 1 while variety Green Master, Shahi-50, Shikha, Shila, Shital, Naogaon-5, Shohag-50, Giant Long and genotype CS-043 grouped in cluster 2. Variety Shila was very close to variety Shital with the least genetic distance (0.1712). The highest genetic distance (0.5352) was found between Joti and Naogaon-5. DOI: http://dx.doi.org/10.3329/cujbs.v6i1-2.17081 The Chittagong Univ. J. B. Sci.,Vol. 6(1&2):51-63, 2011


2014 ◽  
Vol 6 (4) ◽  
pp. 399-406
Author(s):  
Vellaichamy RAMANADEVI ◽  
Muthusamy THANGARAJ

The Random Amplified Polymorphic DNA (RAPD) technique was used to study the genetic diversity of four Elops machnata populations in South India. Elops machnata is considered as a least concern species (LC), categorized by the International Union for Conservation and Nature (IUCN). The population trends are currently stable in Indian Ocean, Eastern Africa, but are unknown throughout the rest of its expansive range, especially in Indian estuaries. Among the ten RAPD primers tested, eight primers got amplified and gave scorable bands. In total, 119 scorable bands were observed in all populations. The overall observed and effective number of alleles was found to be 2.000 ± 0.000 and 1.5307 ± 0.2503 respectively for the entire population. The overall polymorphic loci were 61.00% and the overall gene flow among the four populations was predicted to 0.1032. The genetic distance and geographic distance between the four populations showed a positive correlation. The highest genetic similarity (0.6824) was found between Parangipettai and Muthupettai population, which reflected the geographical relationship between them. Tow main clusters were obtained based on UPGMA dendrogram. This study proves that RAPD analysis has the ability to discriminate E. machnata populations in South Indian coastal waters.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ferdaous Guasmi ◽  
Walid Elfalleh ◽  
Hédia Hannachi ◽  
Khadija Fères ◽  
Leila Touil ◽  
...  

Random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) were assayed to determine the genetic diversity of 80 barley specimens from South Tunisia. The ISSR primers showed variation in the percentage of polymorphism, band informativeness (Ib), and resolving power (Rp). The percentage of polymorphism is 66.67%, the average Ib ranged from 0.24 to 0.39, while Rp ranged from 0.74 to 1.16. In RAPD analysis, three primers yielded a total of 17 scorable bands, which are all polymorphic. The three polymorphic primers exhibited variation with regard to average band informativeness (AvIb) and resolving power (Rp). RAPD and ISSR marker systems were found to be useful for the genetic diversity among the barley specimens. The two dendrograms obtained through these markers show different clustering of 80 barely specimens, but we noted that some clusters were similar in some cases. A poor correlation () was found between both sets of genetic similarity data, suggesting that both sets of markers revealed unrelated estimates of genetic relationships. Therefore, the ISSR and RAPD molecular markers show two genetic grouping of studied barely specimens.


Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 995-999 ◽  
Author(s):  
H I Amadou ◽  
P J Bebeli ◽  
P J Kaltsikes

Random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm using 25 African accessions from the collection in the International Institute for Tropical Agriculture, Ibadan, Nigeria. Fifty random decamer primers were screened to assess their ability to detect polymorphism in bambara; 17 of them were selected for this study. Considerable genetic diversity was found among the V. subterranea accessions studied. The relationships among the 25 accessions were studied by cluster analysis. The dendrograms showed two main groups of accessions mainly along the lines of their geographic origin. It is concluded that RAPD can be used for germplasm classification in bambara groundnut and hence for improving this crop.Key words: germplasm, PCR, RAPD, Vigna subterranea.


2011 ◽  
Vol 343-344 ◽  
pp. 981-987
Author(s):  
Feng Juan Li ◽  
Chang Lu Wang ◽  
Dong He ◽  
Ya Qiong Liu ◽  
Mian Hua Chen ◽  
...  

RAPD markers are used to study the genetic diversity of the main planting on 37 castor varieties widely cultivated in china according to the oil content and other characteristic of different castor varieties. Genetic distance of 37 Chinese castor varieties is studied by RAPD markers analysis. RAPD analysis shows that a total of 122 bands are amplified from random primers of 20 S series, including 71 polymorphic bands with polymorphic rate of 58.20%. 37 castor beans are divided into four major groups in the phylogenetic tree. One castor germplasm is included in1, 2, 3 groups respectively, and two sub-groups are included in the 4 major group.


2016 ◽  
Vol 97 (6) ◽  
pp. 1307-1315 ◽  
Author(s):  
Elangovan Dilipan ◽  
Jutta Papenbrock ◽  
Thirunavakkarasu Thangaradjou

In India 14 seagrass species can be found with monospecific genera (Enhalus, ThalassiaandSyringodium),Cymodoceawith two species andHalophilaandHalodulerepresented by more than two taxonomically complex species. Considering this, the present study was made to understand the level and pattern of genetic variability among these species collected from Tamilnadu coast, India. Random amplified polymorphic DNA (RAPD) analysis was used to evaluate the level of polymorphism existing between the species. Out of the 12 primers tested, 10 primers amplified 415 DNA fragments with an average of 41.5 fragments per primer. Of the total 415 amplified fragments only 123 (29.7%) were monomorphic and the remaining 292 (70.3%) were polymorphic for Indian seagrass species. Among the 10 primers used four are identified as the key primers capable of distinguishing all the Indian seagrasses with a high degree of polymorphism and bringing representative polymorphic alleles in all the tested seagrasses. From the present investigation, this study shows that the RAPD marker technique can be used not only as a tool to analyse genetic diversity but also to resolve the taxonomic uncertainties existing in the Indian seagrasses. The efficiency of these primers in bringing out the genetic polymorphism or homogeneity among different populations of theHalophilaandHalodulecomplex still has to be tested before recommending these primers as an identification tool for Indian seagrasses.


Sign in / Sign up

Export Citation Format

Share Document