Detection of maize DNA sequences amplified in wheat

Genome ◽  
1995 ◽  
Vol 38 (5) ◽  
pp. 946-950 ◽  
Author(s):  
Juan Zhang ◽  
Bernd Friebe ◽  
Bikram S. Gill

Genomic in situ hybridization to somatic metaphase chromosomes of hexaploid wheat cv. Chinese Spring using biotinylated maize genomic DNA as a probe revealed the existence of amplified maize DNA sequences in five pairs of chromosomes. The in situ hybridization sites were located on chromosomes 1A, 7A, 2B, 3B, and 7B. One pair of in situ hybridization sites was also observed in hexaploid oat. The locations and sizes of in situ hybridization sites varied among progenitor species.Key words: Triticum aestivum, Zea mays, shared DNA sequences, genomic in situ hybridization.

Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Jiming Jiang ◽  
Bikram S. Gill

Different combinations of chromosome N- or C-banding with in situ hybridization (ISH) or genomic in situ hybridization (GISH) were sequentially performed on metaphase chromosomes of wheat. A modified N-banding–ISH/GISH sequential procedure gave best results. Similarly, a modified C-banding – ISH/GISH procedure also gave satisfactory results. The variation of the hot acid treatment in the standard chromosome N- or C-banding procedures was the major factor affecting the resolution of the subsequent ISH and GISH. By the sequential chromosome banding – ISH/GISH analysis, multicopy DNA sequences and the breakpoints of wheat–alien translocations were directly allocated to specific chromosomes of wheat. The sequential chromosome banding– ISH/GISH technique should be widely applicable in genome mapping, especially in cytogenetic and molecular mapping of heterochromatic and euchromatic regions of plant and animal chromosomes.Key words: N-banding, C-banding, in situ hybridization, genomic in situ hybridization.


Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 489-494 ◽  
Author(s):  
Yasuhiko Mukai ◽  
Yumiko Nakahara ◽  
Maki Yamamoto

Common wheat, Triticum aestivum, is an allohexaploid species consisting of three different genomes (A, B, and D). The three genomes were simultaneously discriminated with different colors. Biotinylated total genomic DNA of the diploid A genome progenitor Triticum urartu, digoxigenin-labeled total genomic DNA of the diploid D genome progenitor Aegilops squarrosa, and nonlabeled total genomic DNA of one of the possible B genome progenitors Ae. speltoides were hybridized in situ to metaphase chromosome spreads of Triticum aestivum cv. Chinese Spring. For detection, only two fluorochromes, fluorescein and rhodamine, were used. The A, B, and D genomes were simultaneously detected by their yellow, brown, and orange fluorescence, respectively. The genomic fluorescence in situ hybridization pattern of chromosome 4A of cv. Chinese Spring wheat showed that the distal 32% of the long arm was derived from a B genome chromosome. Furthermore, by using two highly repeated sequence probes, pSc 119.2 and pAsl, and two fluorochromes simultaneously, we were able to identify all B and D genome chromosomes and chromosomes 1A, 4A, and 5A of wheat.Key words: common wheat, in situ hybridization, multicolor fluorescence.


Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 947-953 ◽  
Author(s):  
G Gonzalez ◽  
V Confalonieri ◽  
C Comas ◽  
C A Naranjo ◽  
L Poggio

The aim of this paper is to test with genomic in situ hybridization the genomic affinities between maize and its putative progenitor Zea mays subsp. parviglumis. Blocking procedures were applied for the purpose of improving discrimination among chromosome regions. Unlabeled genomic DNA from Z. mays subsp. parviglumis as a blocking agent and labeled genomic DNA from maize were hybridized on maize chromosomes. On the other hand, mitotic metaphases from Z. mays subsp. parviglumis were blocked with unlabeled genomic DNA of maize and hybridized with labeled genomic DNA from Z. mays subsp. parviglumis. Both experiments showed that either maize or Z. mays subsp. parviglumis chromosomes have their own unique sequences. This means an unexpected degree of divergence if Z. mays subsp. parviglumis is the only progenitor of maize, a result that is discussed in relation to our previous genomic in situ hybridization observations and to the different scenarios proposed about the origin of maize.Key words: evolutionary relationships, Zea mays subsp. mays, teosinte, Tripsacum, molecular cytogenetics, genomic in situ hybridization (GISH).


Genome ◽  
1995 ◽  
Vol 38 (4) ◽  
pp. 814-816 ◽  
Author(s):  
K. Anamthawat-Jónsson ◽  
S. M. Reader

We used pre-annealing of differently labelled total genomic DNA probes to perform simultaneous genomic in situ hybridization on mitotic and meiotic chromosomes of interspecific hybrids between plant species of the Tribe Triticeae. The species origin of chromosomes was demonstrated by a two-colour fluorescence after in situ hybridization with directly labelled probes incorporating fluorescein (visualized green) and rhodamine (visualized red). The pre-annealing blocked out common DNA sequences between the different genomes, hence increasing species specificity of the probes. The method is simple and rapid because the hybridization takes only about 2 h, including the pre-annealing step, and hence the whole process can be accomplished easily within a working day making it suitable for routine analysis of chromosomes and genomes.Key words: pre-annealing, genomic in situ hybridization, total genomic DNA probe, cereal species.


Author(s):  
Barbara Trask ◽  
Susan Allen ◽  
Anne Bergmann ◽  
Mari Christensen ◽  
Anne Fertitta ◽  
...  

Using fluorescence in situ hybridization (FISH), the positions of DNA sequences can be discretely marked with a fluorescent spot. The efficiency of marking DNA sequences of the size cloned in cosmids is 90-95%, and the fluorescent spots produced after FISH are ≈0.3 μm in diameter. Sites of two sequences can be distinguished using two-color FISH. Different reporter molecules, such as biotin or digoxigenin, are incorporated into DNA sequence probes by nick translation. These reporter molecules are labeled after hybridization with different fluorochromes, e.g., FITC and Texas Red. The development of dual band pass filters (Chromatechnology) allows these fluorochromes to be photographed simultaneously without registration shift.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 687-691 ◽  
Author(s):  
L. Poggio ◽  
V. Confalonieri ◽  
C. Comas ◽  
A. Cuadrado ◽  
N. Jouve ◽  
...  

Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Marian Ørgaard ◽  
Kesara Anamthawat-Jónsson

The genome constitution of Icelandic Elymus caninus, E. alaskanus, and Elytrigia repens was examined by fluorescence in situ hybridization using genomic DNA and selected cloned sequences as probes. Genomic in situ hybridization (GISH) of Hordeum brachyantherum ssp. californicum (diploid, H genome) probe confirmed the presence of an H genome in the two tetraploid Elymus species and identified its presence in the hexaploid Elytrigia repens. The H chromosomes were painted uniformly except for some chromosomes of Elytrigia repens which showed extended unlabelled pericentromeric and subterminal regions. A mixture of genomic DNA from H. marinum ssp. marinum (diploid,Xa genome) and H. murinum ssp. leporinum (tetraploid,Xu genome) did not hybridize to chromosomes of the Elymus species or Elytrigia repens, confirming that these genomes were different from the H genome. The St genomic probe from Pseudoroegneria spicata (diploid) did not discriminate between the genomes of the Elymus species, whereas it produced dispersed and spotty hybridization signals most likely on the two St genomes of Elytrigia repens. Chromosomes of the two genera Elymus and Elytrigia showed different patterns of hybridization with clones pTa71 and pAes41, while clones pTa1 and pSc119.2 hybridized only to Elytrigia chromosomes. Based on FISH with these genomic and cloned probes, the two Elymus species are genomically similar, but they are evidently different from Elytrigia repens. Therefore the genomes of Icelandic Elymus caninus and E. alaskanus remain as StH, whereas the genomes of Elytrigia repens are proposed as XXH.Key words: Elymus, Elytrigia, H genome, St genome, in situ hybridization.


Genome ◽  
1997 ◽  
Vol 40 (3) ◽  
pp. 362-369 ◽  
Author(s):  
J. Lima-Brito ◽  
H. Guedes-Pinto ◽  
G. E. Harrison ◽  
J. S. Heslop-Harrison

Southern and in situ hybridization were used to examine the chromosome constitution, genomic relationships, repetitive DNA sequences, and nuclear architecture in durum wheat × tritordeum hybrids (2n = 5x = 35), where tritordeum is the fertile amphiploid (2n = 6x = 42) between Hordeum chilense and durum wheat. Using in situ hybridization, H. chilense total genomic DNA hybridized strongly to the H. chilense chromosomes and weakly to the wheat chromosomes, which showed some strongly labelled bands. pHcKB6, a cloned repetitive sequence isolated from H. chilense, enabled the unequivocal identification of each H. chilense chromosome at metaphase. Analysis of chromosome disposition in prophase nuclei, using the same probes, showed that the chromosomes of H. chilense origin were in individual domains with only limited intermixing with chromosomes of wheat origin. Six major sites of 18S–26S rDNA genes were detected on the chromosomes of the hybrids. Hybridization to Southern transfers of restriction enzyme digests using genomic DNA showed some variants of tandem repeats, perhaps owing to methylation. Both techniques gave complementary information, extending that available from phenotypic, chromosome morphology, or isozyme analysis, and perhaps are useful for following chromosomes or chromosome segments during further crossing of the lines in plant breeding programs.Key words: In situ hybridization, molecular cytogenetics, plant breeding, Hordeum chilense, Southern hybridization, durum wheat, hybrids.


Sign in / Sign up

Export Citation Format

Share Document