Correlation of strength, rubber content, and water to cement ratio in rubberized concrete

2005 ◽  
Vol 32 (6) ◽  
pp. 1075-1081 ◽  
Author(s):  
Ashraf M Ghaly ◽  
James D Cahill IV

Waste rubber tires that cannot be processed for useful applications are numbered in the millions around the world. The build up of old rubber tires in landfills is commonly considered a major threat to the environment, and it is unquestionably a burden on landfill space. This research project was an investigation into the possibility of using fine rubber particles in concrete mixtures. The experimental testing program was designed to study the effect of the addition of crumb rubber, as replacement of a portion of fine aggregates (sand), on the strength of concrete. Rubber was added to concrete in quantities of 5%, 10%, and 15% by volume of the mixture. Three different water/cement ratios were used: 0.47, 0.54, and 0.61. A total of 180 concrete cubes were made. The cubes were tested in compression at 1, 7, 14, 21, and 28 d with the load continuously and automatically measured until failure. The load values were used to calculate compressive stress as related to different rubber contents and water/cement ratios. Compression test results were used to develop several plots relating rubber content and water/cement ratio to compressive stress of concrete. Test results gathered in this research project indicated that the addition of crumb rubber to concrete results in a reduced strength as compared with that of conventional concrete. Based on the experimental results, correlations have been developed to estimate the reduction in concrete strength as a function of the rubber content in the mix.Key words: compressive strength, concrete, crumb rubber, rubberized concrete.

2011 ◽  
Vol 243-249 ◽  
pp. 1179-1185
Author(s):  
Jing Fu Kang ◽  
Chun Xia Yan

This research investigated the influences of rubber content and water-cement ratio on the compressive strength of roller compacted rubberized concrete (RCR). The mix design of RCR was made by replacing same volume of sand with rubber chips based on the control concrete mix. Four rubber contents (50 kg/m3, 80 kg/m3, 100 kg/m3 and 120 kg/m3) and six water-cement ratios (0.30, 0.35, 0.40, 0.45, 0.50 and 0.55) were used. The specimen cubes were tested in compression at 28d with the load continuously and automatically measured until failure. Test results show that RCR exhibits low compressive strength but a ductile and plastic failure mode, the more the rubber used, the more the compressive strength reduced and the larger toughness obtained. Same as normal concrete, the compressive strength of RCR is also directly related to the water-cement ratio,the smaller the water-cement ratio, the higher the compressive strength. Based on the experimental results, a strength formula was developed to estimate the strength of RCR as a function of the cement strength, water-cement ratio and the rubber content.


2015 ◽  
Vol 61 (4) ◽  
pp. 59-78 ◽  
Author(s):  
F. C. Wang ◽  
W. Song

A study was undertaken to investigate the effects of crumb rubber on the strength and mechanical behaviour of Rubberized cement soil (RCS). In the present investigation, 26 groups of soil samples were prepared at five different percentages of crumb rubber content, four different percentages of cement content and two different finenesses of crumb rubber particle. Compressive strength tests were carried out at the curing age of 7 days, 14 days, 28 days and 90 days. The test results indicated that the inclusion of crumb rubber within cement soil leads to a decrease in the compressive strength and stiffness and improves the cement soil’s brittle behaviour to a more ductile one. A reduction of up to 31% in the compressive strength happened in the 20% crumb content group. The compressive strength increases with the increase in the cement content. And the enlargement of cement content is more efficient at low cement content.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012022
Author(s):  
T Y Pei ◽  
S N Mokhatar ◽  
N A N A Mutalib ◽  
S J S Hakim

Abstract Rubberized concrete was innovated by many researchers to enhance energy absorption under impact load and by reusing scrap tires. Thus, this research was aims to develop the numerical procedure using the Finite Element Method (FEM) to simulate modified rubberized concrete under impact loads and predict its energy absorption under different impact loads. Three existing constitutive models: Concrete Damage Plasticity (CDP), Drucker-Prager (DP), and Modified Drucker-Prager Cap (MDPC) available in ABAQUS software were used to replicate the rubberized concrete with 10% of Rice Hush Ash (RHA) as cement substitution and different percentages (0%, 5%, 10%, 15%, and 20%) of crumb rubber as sand replacement. All three models produced successful FEM results with reasonable modelling assumption, and the CDP model was more effective in simulating rubberized concrete under impact to predict energy absorption than DP and MDPC models. Further, it was concluded that crumb rubber could enhance the energy absorption of concrete. Generally, the energy absorption of the concrete increased as the crumb rubber increase. However, the strength decreased as the crumb rubber increased, but 10% of RHA in concrete mix can maintain the concrete strength. Overall, this study reveals that FEM incorporated with the CDP model is able to predict the impact response of modified crumb rubber as an application of concrete road barrier.


2019 ◽  
Vol 8 (2) ◽  
pp. 5761-5765

With an objective of saving the environment by providing crumb rubber as an alternative to natural fine aggregate this paper presents a study carried out to find the mechanical properties of rubberized concrete. Rubberized concrete is made up of waste rubber from vehicle tyres and other rubber waste which otherwise is left out polluting the environment. In this paper, 7.5% of crumb rubber (obtained by shredding the vehicle tyres) as an alternative to fine aggregate and 7.5% of fly-ash as an alternative to cement is added with other ingredients of concrete to produce an eco-friendly concrete which can be used economically and effectively for construction along the coastal areas. Various properties like workability, compressive strength, split tensile strength, and flexural strength was carried out on concrete specimens exposed to the natural marine environment along the coast of Visakhapatnam, Andhra Pradesh. The total exposure of concrete specimen was about 150 days, and various specimens were tested at 7, 28, 90, 120 and 150 days, respectively. The test results showed that with a slight compromise in strength, the workability of concrete and resistance to the effect of seawater on the strength of concrete significantly improved with the addition of crumb rubber and fly-ash.


2021 ◽  
Vol 283 ◽  
pp. 01016
Author(s):  
Wei Li

In this paper, the main strength of the relationship between water-cement ratio and concrete, and it uses the contrast test of different water cement ratio, finally, it gets the regular change between water cement ratio and concrete strength. The test results show that: cement. when the ratio of large stone: small stone: water: admixture is 340: 618: 1009: 433: 139: 6.8, the water-cement ratio of concrete is within the range of 0.371-0.479. The concrete strength of the sample decreases with the increase of the water-cement ratio. Finally, the relationship between the concrete strength and the water-cement ratio is obtained by fitting.


This study aimed to investigate abrasion resistance, flexural toughness and impact resistance of concrete mixes with incorporated particles of crumb rubber (CR) as a partial substituent by volume to concrete natural aggregates. Seven concrete mixes were prepared with water to cement ratio 0.4 and cement content 450 kg/m3 . One mix, with no rubber content, was considered as a reference mix to compare the designated mechanical properties of plain rubberized mixes, while the remaining six mixes contained crumb rubber as a partial replacer at levels of 10%, 20% and 30% by volume of each sand and crushed stone aggregates. Abrasion resistance was evaluated according to British standard BS 1338 and impact resistance was measured according to ACI 544.2R. It has been discovered that increasing CR replacement level led to a significant improvement in abrasion resistance, flexural toughness, and impact resistance (number of blows that cause failure cracking). Abrasion lengths decreased by 3.0 - 20.6%, while flexural toughness and impact resistance increased by 8.2 - 39.4% and 18.7 - 365.4% respectively with increasing crumb rubber replacement level.


2015 ◽  
Vol 773-774 ◽  
pp. 928-932
Author(s):  
Euniza Jusli ◽  
Hasanan Md Nor ◽  
P.J. Ramadhansyah ◽  
Zaiton Haron

The influence of using rubber tyre granules (RTG) as aggregates on the strength of concrete and microstructure characteristics of rubberized concrete was investigated in this study. Mix proportion of cement: sand: aggregate: superplasticizer; 1:1.5:1.7:0.003 and 0.47 water cement ratio (w/c) was used. The RTG of size 1-4 mm and 5-8 mm were used throughout this study. Progressive reduction of strength was observed with the increased of RTG percentage and size. Thermogravimetry and differential thermogravimetric (TGA-DTA) analyses were performed to evaluate the decomposition process of materials heated up to 1000 oC. Less reactions the structure bonds are less at the range of 2000-3000 cm-1 wavelength were detected in Fourier Transform Infra-Red (FTIR) analysis due to the stability of the structures developed in concrete samples. In general, the main elements were calcium, carbon, silica and aluminum. The existence of SBR and carbon black of RTG in the sample can be observed by the presents of a carbon peak in EDX.


2014 ◽  
Vol 487 ◽  
pp. 84-89
Author(s):  
Hai Long Ning ◽  
Wen Feng Zhao ◽  
Jian Liu ◽  
Shao Peng Jiao ◽  
Yi Xin Wang

To study the effect of recycled coarse aggregate, water-cement ratio and mixture ratio on the physico-mechanical properties of recycled concrete, determine the finial optimum mixture ratio and physico-mechanical properties of recycled concrete with the optimum mixture ratio, physico-mechanical tests are done on recycled concrete and conventional concrete. Results show that with the replacement rate increasing of recycled coarse aggregate, the compressive strength and splitting tensile strength of recycled concrete increase and then decrease. It is feasible to develop the concrete with 100% replacement rate of recycled coarse aggregate. With an increase of recycled coarse aggregate replacement rate, dry shrinkage ratio of concrete increases gradually, but the increasing range has little effect on the concrete. The concrete strength of 28 days is linear with water-cement ratio with the correlation coefficient is 0.98763. Taking appropriate mix design, the physico-mechanical properties of recycled concrete will surpass or be equivalent to those of conventional concrete. Recycled concrete of the optimum mixing rate is the high strength with lower brittleness.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yu Deng ◽  
Jiong-Feng Liang ◽  
Wei Li

In order to study the axial performance of steel fiber-reinforced rubberized concrete-filled circular steel tubular columns, a total of 11 steel fiber-reinforced rubberized concrete-filled circular tubular columns are subjected to axial compression tests, considering the main parameters are rubber substitution rate, rubber particle size, steel fiber content, and concrete strength. The test results show that the use of rubber will reduce the bearing capacity of the columns but can increase the ductility of the columns. The smaller the rubber particles, the greater the reduction in the bearing capacity. The incorporation of steel fibers can increase the compressive strength of concrete, thereby improving the axial performance of the columns. The strength of concrete has the greatest influence on the columns, and the bearing capacity increases approximately linearly with the increase of concrete strength.


2013 ◽  
Vol 438-439 ◽  
pp. 179-182
Author(s):  
Xiu Hai Yin ◽  
Ling Lu

By changing the grading of pebble and water cement ratio, the influence of pebble grading on the compressive strength and flexural strength of concrete is studied at the same pebble content. Test results show that the compression strength and bending strength of concrete decrease with the increasing of the maximal size of coarse aggregate, while the maximal size (Dmax) of pebble aggregate achieves 10mm, 20mm, 40mm and 60mm. And concrete strength decreases significantly when Dmax is 60mm. Meanwhile, the influence of aggregate gradation is obviously with the increase of age time.


Sign in / Sign up

Export Citation Format

Share Document