OPTICAL ABSORPTION SPECTRA OF ARSENIC AND PHOSPHORUS IN SILICON

1962 ◽  
Vol 40 (10) ◽  
pp. 1480-1489 ◽  
Author(s):  
J. W. Bichard ◽  
J. C. Giles

The optical absorption spectra of arsenic and phosphorus donor impurities in silicon have been studied under conditions of improved resolution. Absorption lines due to transitions from the impurity ground state to the excited states 2p0, 2p±, 3p0, 3p±, 4p0, 4 p±, and 5p0, and 5p± have been observed at 4.2° K. The relative intensities of some of these absorption lines are compared with existing experimental and theoretical estimates. The contribution of instrumental broadening to the observed line widths is assessed and natural line widths are estimated. The estimates indicate values for the natural line widths which are much less than those previously reported. For phosphorus impurity, the natural line widths are estimated to be less than 0.08 × 10−3 electron volts full width at half-maximum. The possibility of concentration broadening is discussed in connection with the arsenic data.

1968 ◽  
Vol 5 (1) ◽  
pp. 89-92 ◽  
Author(s):  
P. G. Manning

The optical absorption spectra of green vesuvianite crystals from Lowell County, Vermont, are reported in the energy range 12 000 cm−1 to 30 000 cm−1. The principal absorptions have been attributed to octahedrally bonded Fe3+ and the individual bands have been assigned to spin-forbidden electronic transitions from the 6A1 ground state to excited states in Fe3+. In particular, the 6A1 → 4A14E(G) transition is marked by a relatively sharp band at 21 600 cm−1.


1983 ◽  
Vol 61 (12) ◽  
pp. 2799-2803 ◽  
Author(s):  
Naoto Okabe ◽  
Toyoaki Kimura ◽  
Kenji Fueki

Photoconductivity spectra of trapped electrons in γ-irradiated 3-methylpentane, 2-methylpentane, 3-methylheptane, and 3-methylpentane–methylcyclohexane (1:9 volume ratio) glasses at 77 K were measured. From the comparison of photoconductivity and optical absorption spectra in these systems we have obtained relative values of quantum efficiencies for a trapped electron in the ground state to be excited to the conduction band by photo-induced transition. For electrons stably trapped, we have measured the ranges of trap depths from the shallowest to the deepest in these systems.


1998 ◽  
Vol 510 ◽  
Author(s):  
Masashi Suezawa

AbstractIn this report, we proposed that complexes responsible for optical absorption lines in Si grown in a hydrogen (H) atmsophere were composed of interstitial Si and H atoms and then determined the formation energy of interstitial Si in Au-doped Si from the measurements of optical absorption due to H bound to interstitial Si. In the first experiment, specimens were grown in a hydrogen atmosphere. In the second experiment, Si crystals were doped with Au by a vapor method; namely, specimens were sealed in quartz capsules together with a piece of Au wire and then annealed at high temperature followed by quenching in water. Then the specimens were doped with H by annealing them in hydrogen atmosphere of 1 atm. followed by quenching. We measured optical absorption of those specimens. From the effect of impurity on the optical absorption spectra of Si grown in a hydrogen atmosphere, we concluded that those optical absorption lines, including 2223 cm−1line, were due to complexes of interstitial Si and H. From the temperature dependence of the intensity of 2223 cm−1line, the formation energy of interstitial Si in Au-doped Si was determined to be about 2.1 eV


1993 ◽  
Vol 307 ◽  
Author(s):  
Lin X. Chen ◽  
Michael K. Bowman ◽  
Pedro A. Montano ◽  
James R. Norris

ABSTRACTThe structures of C5H5NiNO in a reversible photochemical reaction were studied via EXAFS, FTIR, and optical absorption spectroscopies. A photoexcited intermediate with distinctively different EXAFS, IR, and optical absorption spectra from those of the ground state molecules was generated upon irradiation using 365 nm light at 20K in a 3-methylpentane solution. The reverse reaction was induced by irradiation with 310 nm light. The EXAFS data analysis has shown a 0. 12 Å elongation of the Ni-N bond and the bending of Ni-N-O in the photoexcited intermediate. Several ZINDO calculations were conducted based on the structures obtained from the EXAFS spectroscopy. These calculations reproduced the changes in the optical spectra and the intramolecular electron transfer in C5H5NiNO.


Author(s):  
Felix Henneke ◽  
Lin Lin ◽  
Christian Vorwerk ◽  
Claudia Draxl ◽  
Rupert Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document