Large-scale geomechanical model testing of an underground cavern group in a true three-dimensional (3-D) stress state

2010 ◽  
Vol 47 (9) ◽  
pp. 935-946 ◽  
Author(s):  
W. S. Zhu ◽  
Q. B. Zhang ◽  
H. H. Zhu ◽  
Y. Li ◽  
J.-H. Yin ◽  
...  

The stability of a large cavern group at great depth is discussed on the basis of large-scale three-dimensional (3-D) geomechanical model tests and numerical simulations. The model tests are described in detail. Improvements in the tests were made in terms of experimental techniques and advanced measurement methods. The model tests utilized active loading on six sides of a rock mass in a true 3-D stress state. During the model construction, precast blocks were fabricated and monitoring holes were defined prior to test initiation. Newly developed combination ball-sliding walls were installed on each of the major loading surfaces to reduce the friction induced by model deformation. A unique grouting and installation technique employing prestressed cables was adopted in the tests. A digital photogrammetric technique, displacement sensing bars using fiber Bragg grating (FBG) technology, and mini multipoint extensometers were developed for measuring deformation. Overloading tests were then conducted for different overburden depths, and 3-D numerical analyses were performed to simulate the testing procedures. Conclusions regarding the stability of the cavern group were developed based on a comparison between the experimental and numerical results.

2010 ◽  
Vol 97-101 ◽  
pp. 2770-2773
Author(s):  
Wei Shen Zhu ◽  
Yong Li ◽  
Min Yong ◽  
Q.B. Zhang ◽  
Shu Cai Li

Geomechanics modeling has played important role in geotechnical engineering. In order to investigate on the stability of underground caverns at great depth, a large-scale geomechanics model test system was designed and manufactured. The system mainly consisted of a steel structural frame and a hydraulic loading control system, which can apply active loading on six sides with a true three-dimensional stress state. Newly developed combinational ball sliding walls were installed on each of the major loading surfaces, which were significantly reduced the friction due to model deformation. The system has apparent technical advantages such as high stiffness, great stability, and flexibility of assembly, and easy adjustment of its dimensions.


Author(s):  
Ve´ronique Penin ◽  
Pascale Kulisa ◽  
Franc¸ois Bario

During the last few decades, the size and weight of turbo-machinery have been continuously reduced. However, by decreasing the distance between rows, rotor-stator interaction is strengthened. Two interactions now have the same magnitude: wake interaction and potential effect. Studying this effect is essential to understand rotor-stator interactions. Indeed, this phenomenon influences the whole flow, including the boundary layer of the upstream and downstream blades, ergo the stability of the flow and the efficiency of the machine. A large scale turbine cascade followed by a specially designed rotating cylinder system is used. Synchronised velocity LDA measurements on the vane profile show the flow and boundary layer behavior due to the moving bars. To help the general understanding and to corroborate our experimental results, numerical investigations are carried out with an unsteady three dimensional Navier-Stokes code. Moreover, the numerical study informs about the potential disturbance to the whole flow of the cascade.


1983 ◽  
Vol 105 (2) ◽  
pp. 322-331 ◽  
Author(s):  
H. D. Joslyn ◽  
R. P. Dring ◽  
O. P. Sharma

High response aerodynamic measurements were made in a large-scale, axial, flow turbine model to study the unsteadiness and three dimensionality of the flow. High response velocity vector and total pressure data were acquired. A comparison was made of the results of phase lock averaging both raw and reduced data (voltages and velocities). The velocity vector measurements showed that there were strong radial flows present as well as significant periodic changes in the flow field due to relative rotor and vane positions. Random, periodic, and total unsteadiness levels were computed from the instantaneous and phase-lock-averaged velocity data. Time-averaged data were compared with an inviscid two-dimensional calculation. A comparison was also made of time-averaged total pressure measurements obtained from high-response and low-response (steady-state) probes.


2011 ◽  
Vol 90-93 ◽  
pp. 760-763
Author(s):  
Yin Ping Qi ◽  
Lv Xiang ◽  
Wei Shen Zhu

A great number of large-scale hydropower stations are to be constructed in southwest China. Many of them feature great depth or high in situ stresses. In this paper, a coupled damage and rheology method is adopted for stability analysis of an underground cavern group with time effect to consider the rock deformation. Meanwhile, a new method considering the crackopening displacement is used for back analysis. The stability of the surrounding rock masses is then evaluated.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hanwen Jia ◽  
Baoxu Yan ◽  
Erol Yilmaz

There are few studies on the management methods of large-scale goaf groups per the specific surrounding rock mass conditions of each goaf. This paper evaluates comprehensively the stability of the multistage large-scale goaf group in a Pb-Zn mine in Inner Mongolia, China, via the modified Mathews stability diagram technique. The volume of each goaf to be backfilled was quantitatively analyzed in the combination of theoretical analysis and three-dimensional laser scanning technology. The corresponding mechanical characteristics of the filling were determined by laboratory testing while formulating the treatment scheme of the large goaf group using the backfill method. The applicability of the treatment scheme using the backfill was verified by the combination of the numerical results of the distribution of the surrounding rock failure zone and the monitored data of the surface subsidence. The research results and treatment scheme using the backfill can provide a reference for similar conditions of mines worldwide.


Author(s):  
H. D. Joslyn ◽  
R. P. Dring ◽  
O. P. Sharma

High response aerodynamic measurements were made in a large scale, axial, flow turbine model to study the unsteadiness and three dimensionality of the flow. High response velocity vector and total pressure data were acquired. A comparison was made of the results of phase lock, averaging both raw and reduced data (voltages and velocities). The velocity vector measurements showed that there were strong radial flows present as well as significant periodic changes in the flow field due to relative rotor and vane positions. Random, periodic, and total unsteadiness levels were computed from the instantaneous and phase lock averaged velocity data. Time averaged data were compared with an inviscid two-dimensional calculation. A comparison was also made of time averaged total pressure measurements obtained from high response and low response (steady-state) probes.


Author(s):  
M. J. P. Cullen ◽  
T. Kuna ◽  
B. Pelloni ◽  
M. Wilkinson

The semi-geostrophic equations are used widely in the modelling of large-scale atmospheric flows. In this note, we prove the global existence of weak solutions of the incompressible semi-geostrophic equations, in geostrophic coordinates, in a three-dimensional domain with a free upper boundary. The proof, based on an energy minimization argument originally inspired by the Stability Principle as studied by Cullen, Purser and others, uses optimal transport techniques as well as the analysis of Hamiltonian ODEs in spaces of probability measures as studied by Ambrosio and Gangbo. We also give a general formulation of the Stability Principle in a rigorous mathematical framework.


2012 ◽  
Vol 1 (33) ◽  
pp. 71 ◽  
Author(s):  
Arndt Hildebrandt ◽  
Torsten Schlurmann

This paper presents breaking wave loads on a tripod structure from physical model tests and numerical simulations. The large scale model tests (1:12) are described as well as the validation of the three dimensional numerical model by comparison of CFD wave gauge data and pressures with measurements in the large wave flume inside and outside the impact area. Subsequently, the impact areas due to a broken wave, a curled wave front as well as for wave breaking directly at the structure with a partly vertical wave front are compared to each other. Line forces in terms of slamming coefficients with variation in time and space are derived from CFD results and the velocity distribution is presented at the onset of wave breaking. Finally, the results are briefly discussed in comparison to other slamming studies.


Sign in / Sign up

Export Citation Format

Share Document