Shear strength characteristics of two saprolitic soils

1996 ◽  
Vol 33 (4) ◽  
pp. 595-609 ◽  
Author(s):  
Julian K-M Gan ◽  
D G Fredlund

The saturated and unsaturated shear strength behavior of an undisturbed, completely decomposed fine ash tuff and an undisturbed, completely decomposed granite from Hong Kong were studied using direct shear and triaxial tests. The completely decomposed fine ash tuff is a fine- to medium-grained saprolite. The completely decomposed granite is a coarse-grained saprolite. Results show that matric suction increases the shear strength of both soils. The extent of the increase is the shear strength with matric suction is related to the soil-water characteristic curve for the soil and to the amount of dilation during shear. The effect of matric suction on the shear strength was more pronounced for the fine- to medium-grained completely decomposed fine ash tuff than for the coarse-grained completely decomposed granite. These studies on the saprolitic soils provide insight into the understanding of the shear strength of unsaturated, coarse-grained soils. Key words: saprolites, shear strength, matric suction, triaxial, direct shear, coarse-grained soils.

2010 ◽  
Vol 47 (10) ◽  
pp. 1112-1126 ◽  
Author(s):  
Md. Akhtar Hossain ◽  
Jian-Hua Yin

Shear strength and dilative characteristics of a re-compacted completely decomposed granite (CDG) soil are studied by performing a series of single-stage consolidated drained direct shear tests under different matric suctions and net normal stresses. The axis-translation technique is applied to control the pore-water and pore-air pressures. A soil-water retention curve (SWRC) is obtained for the CDG soil from the equilibrium water content corresponding to each applied matric suction value for zero net normal stress using a modified direct shear apparatus. Shear strength increases with matric suction and net normal stress, and the failure envelope is observed to be linear. The apparent angle of internal friction and cohesion intercept increase with matric suction. A greater dilation angle is found at higher suctions with lower net normal stresses, while lower or zero dilation angles are observed under higher net normal stresses with lower suctions, also at a saturated condition. Experimental shear strength data are compared with the analytical shear strength results obtained from a previously modified model considering the SWRC, effective shear strength parameters, and analytical dilation angles. The experimental shear strength data are slightly higher than the analytical results under higher net normal stresses in a higher suction range.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruiqian Wu ◽  
Youzhi Tang ◽  
Shaohe Li ◽  
Wei Wang ◽  
Ping Jiang ◽  
...  

In order to probe into one simplified method to predict the shear strength of Shaoxing unsaturated silty clay, the test method combining unsaturated soil consolidation instrument and conventional direct shear instrument is used to study the shear strength, and the method is compared and verified with the results of equal suction direct shear test. The research results show that the soil water characteristic curve fitted by the measured data points and VG model has obvious stage characteristics in the range of 0~38 kPa, 38~910 kPa, and 910~10000 kPa. The shear strength of unsaturated soil measured by consolidation meter combined with conventional direct shear test is in good agreement with that measured by equal suction direct shear test in the range of 0~500 kPa. The results show that the shear strength, total cohesion, and effective internal friction angle of soil increase slightly with the increase of matric suction in the range of 0~38 kPa. When the matric suction increases from 38 kPa to 500 kPa, the shear strength and total cohesion force of the soil have similar stage characteristics with the SWCC, which first increases and then tends to be stable, while the effective internal friction angle changes slightly. Finally, taking the air-entry value as the demarcation point, an improved model of unsaturated shear strength is proposed by analyzing the error value. Compared with the measured value, the absolute value of relative error is basically kept in the range of 5%~10%, which is close to the measured value.


2009 ◽  
Vol 46 (5) ◽  
pp. 595-606 ◽  
Author(s):  
Tariq B. Hamid ◽  
Gerald A. Miller

Unsaturated soil interfaces exist where unsaturated soil is in contact with structures such as foundations, retaining walls, and buried pipes. The unsaturated soil interface can be defined as a layer of unsaturated soil through which stresses are transferred from soil to structure and vice versa. In this paper, the shearing behavior of unsaturated soil interfaces is examined using results of interface direct shear tests conducted on a low-plasticity fine-grained soil. A conventional direct shear test device was modified to conduct direct shear interface tests using matric suction control. Further, the results were used to define failure envelopes for unsaturated soil interfaces having smooth and rough counterfaces. Results of this study indicate that matric suction contributes to the peak shear strength of unsaturated interfaces; however, postpeak shear strength did not appear to vary with changes in matric suction. Variations in net normal stress affected both peak and postpeak shear strength. Failure envelopes developed using the soil-water characteristic curve (SWCC) appeared to capture the nonlinear influence of matric suction on shear strength of soil and interfaces.


2017 ◽  
Vol 79 (2) ◽  
Author(s):  
Pooya Saffari ◽  
Mohd Jamaludin Md Noor ◽  
Shervin Motamedi ◽  
Roslan Hashim ◽  
Zubaidah Ismail ◽  
...  

The conventional theories of soil mechanics use linear envelope to derive shear strength; this however, leads to an overestimation of the factor of safety in the examination of slopes. Therefore, the incorporation of methods that acknowledge the existence of non-linear characteristics of shear strength is necessary in the analysis of slopes specifically. This is due to the substantial influence of non-linear shear strength behavior on the slope failure mechanism when they are at low stress levels. In this paper, the nonlinearity of shear strength for grade VI granitic residual soil is studied. “Non-Axis Translation Consolidated Drained Triaxial” tests were performed at various ranges of net stress and suction. Thereafter, to characterize shear strength behavior, shear strength parameters were derived. The soil-water characteristic curve was plotted after conducting “Pressure Plate Extractor” test at a series of suction. The result substantiated the non-linearity of shear strength for granitic residual soil based on net stress and suction.  


1999 ◽  
Vol 36 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Daud W Rassam ◽  
David J Williams

A relationship describing the shear-strength profile of a desiccating soil deposit is essential for the purpose of analysis, especially when a numerical method is adopted where each zone in a discretised grid is assigned an elevation-dependent shear-strength value. The matric-suction profile of a desiccating soil deposit is nonlinear. Up to the air-entry value, an increase in matric suction is associated with a linear increase in shear strength. Beyond air entry, as the soil starts to desaturate, a nonlinear increase in shear strength occurs. The soil-water characteristic curve is stress dependent, as is the shear-strength gain as matric suction increases. In this paper, a three-dimensional, nonlinear regression analysis showed that a power-additive function is suitable to describe the variation of the shear strength of unsaturated soils with matric suction. The proposed function incorporates the effect of normal stress on the contribution of matric suction to the shear strength.Key words: air-entry value, matric suction, nonlinear regression, soil-water characteristic curve, tailings, unsaturated shear strength.


Author(s):  
Wei Zhang ◽  
Jia-qiang Zou ◽  
Kang Bian ◽  
Yang Wu

The immersion weakening effect of natural soil has always been a difficult problem encountered in geotechnical engineering practice. The bond dissolution is a common cause of soil strength deterioration, which remains not well understood yet. In this study, a thermodynamic-based constitutive model of structural soils based on the α model is first established, considering the bond strength by modifying the yield surface size and gradually reducing the bond strength with the development of plastic strain. Furthermore, by taking the meso-mechanisms of bond dissolution into account, the evolution rule of the free energy during the bond dissolution process is derived based on a homogenization approach, and a thermodynamic-based constitutive model of structural soil with bond dissolution is thereafter developed. By comparing with the results of one-dimensional compression tests and conventional triaxial tests, the model is verified to be capable of reflecting the gradual destructuration process of soil while loading. The comparison with triaxial test results of completely decomposed granite after different immersion durations and parametric studies show that based on the cross-scale energy equivalence, the model can well reflect the strength deterioration characteristics of completely decomposed granite with bond dissolution mechanisms at the mesoscale fully considered.


2020 ◽  
Vol 57 (5) ◽  
pp. 763-769 ◽  
Author(s):  
W. Li ◽  
C.Y. Kwok ◽  
K. Senetakis

Drained triaxial shearing tests were performed on a well-graded compressive sand (completely decomposed granite, CDG) and its mixtures with granulated rubber tires to investigate the effects of rubber size and content on their mechanical behaviour. Three sizes of rubber particles, GR1, GR2, and GR3, were used with size ratios to CDG (D50,rubber : D50,CDG) of 0.9, 3.5, and 7.2, respectively, and the rubber content ranged from 0% to 30%. The results show that for CDG–GR1 mixtures, the strength decreases with increasing rubber content, while for CDG–GR2 and CDG–GR3 mixtures, the strength decreases only at 10% rubber content and then increases markedly with increasing rubber content. The increase of strength is mainly because the inclusion of large rubber particles widens the particle size distributions of the mixtures, resulting in denser packings. The denser packings also lead to a decrease in compressibility. At larger size ratio and higher rubber content, the CDG–rubber mixtures show higher shear strength and lower compressibility than pure CDG, which indicates the CDG–rubber mixtures are very suitable to be used as filling materials.


Author(s):  
Jakub Stacho ◽  
Monika Sulovska ◽  
Ivan Slavik

The paper deals with the laboratory testing of coarse-grained soils that are reinforced using a geogrid. The shear strength properties were determined using a large-scale direct shear test apparatus. The tests were executed on original as well as on reinforced soil, when the geogrid was placed on a sliding surface, which permitted determining the shear strength properties of the soil-geogrid interface. The aim of the tests was to determine the interface shear strength coefficient α, which represents the ratio of the shear strength of the soil-geogrid interface to the unreinforced soil. The tests were executed on 3 samples of coarse-grained materials, i.e., poorly graded sand, poorly graded fine gravel and poorly graded medium gravel. Two types of geogrids were tested, i.e., a woven polyester geogrid and a stiff polypropylene geogrid. The results of the laboratory tests on the medium gravel showed that the reduction coefficient α reached higher values in the case of the stiff polypropylene geogrid. In the cases of the fine gravel and sand, the values of the interface coefficient α were similar to each other. The shear strength of the interface was reduced or was similar to the shear strength of unreinforced soil in a peak shear stress state, but significantly increased with horizontal deformations, especially for the fine gravel and sand. The largest value of the coefficient α was measured in the critical shear stress state. Based on the results of the testing, a correlation which allows for determining the optimal grain size distribution was obtained.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Reza Noorzad ◽  
Seyed Taher Ghoreyshi Zarinkolaei

AbstractThis research investigates the behavior of sand reinforced with polypropylene fiber. To do this, 40 direct shear tests and 40 triaxial tests were performed on the coastal beaches of Babolsar, a city in the North of Iran. The effect of parameters such as fiber content, length of fiber and normal or confining pressure on the behavior of Babolsar sand have been studied. In this study, four various fiber contents (0, 0.25, 0.5 and 1 percent), three different lengths of fiber (6, 12 and 18 mm) and four normal or confining pressures (50, 100, 200 and 400 kPa) have been employed. The test results show that fiber inclusion has a significant effect on the behavior of sand. In both direct shear and triaxial tests, the addition of fibers improved shear strength parameters (C, '), increased peak shear strength and axial strain at failure, and also limited the amount of post-peak reduction in shear resistance. The comparison of the test results revealed that due to better fiber orientation toward the direction of principal tensile strain in triaxial test as compared to direct shear tests, the fiber efficiency and its effect on soil behavior is much more significant in triaxial specimens.


2007 ◽  
Vol 44 (11) ◽  
pp. 1314-1328 ◽  
Author(s):  
Li-Jun Su ◽  
Terence C.F. Chan ◽  
Y.K. Shiu ◽  
Tony Cheung ◽  
Jian-Hua Yin

The nail–soil interface shear strength is a key parameter in the design and stability assessment of soil nailing systems. A number of factors will influence the nail–soil interface shear strength. Among these factors, the degree of saturation (Sr) of the soil is an important one especially for permanent soil nail structures. To study the influence of Sr on soil nail pull-out shear resistance, a series of laboratory pull-out tests have been conducted on soil nails in compacted completely decomposed granite (CDG) fill prepared to different Sr. The tests were conducted using two specially designed pull-out boxes (with same specifications). In the near-saturated tests, a high Sr (about 98%) was achieved using two special features of the apparatus: a waterproof front cap and back-water pressure pipes at the bottom of the pull-out box. Test results showed that the nail–soil shearing plane migrated outwards into the soil when the Sr of the soil increased. Also, peak pull-out strengths of soil nails were strongly influenced by the Sr of the soil. Among the tested Sr, the highest values of peak pull-out shear strength were obtained at Sr values between 50% and 75%.


Sign in / Sign up

Export Citation Format

Share Document