scholarly journals Neutral bremsstrahlung and excimer electroluminescence in noble gases and its relevance to two-phase dark matter detectors

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
E. Borisova ◽  
A. Buzulutskov

AbstractProportional electroluminescence (EL) is the physical effect used in two-phase detectors for dark matter searches, to optically record (in the gas phase) the ionization signal produced by particle scattering in the liquid phase. In our previous work the presence of a new EL mechanism, namely that of neutral bremsstrahlung (NBrS), was demonstrated in two-phase argon detectors both theoretically and experimentally, in addition to the ordinary EL mechanism due to excimer emission. In this work the similar theoretical approach is applied to all noble gases, i.e. overall to helium, neon, argon, krypton and xenon, to calculate the EL yields and spectra both for NBrS and excimer EL. The relevance of the results obtained to the development of two-phase dark matter detectors is discussed.

Author(s):  
Zhichao Guo ◽  
Zhaoci Li

Abstract In 2018, China’s natural gas import reached 90.39 million tons, and the liquefied natural gas (LNG) import was 53.78 million tons, accounting for 59.5% of total natural gas imports. With the construction of LNG terminals, more studies on the leakage of LNG storage and transportation facilities have emerged to prevent catastrophic consequences such as explosions and frostbite. However, most of previous researches focused on gas pipeline leakage after LNG gasification, and few of those have been done on LNG liquid pipeline leakage. In this paper, Fluent software is used to numerically simulate the process of LNG liquid pipeline leakage. After the occurrence of LNG leakage, it will suffer the process of endothermic, evaporation, and diffusion, which is considered as a two-phase diffusion process. The Euler-Lagrangian method is introduced to simulate the diffusion process of gas phase and liquid phase separately. In the simulation, the liquid phase is regarded as discrete droplets for discrete processing. The movement trajectory, heat transfer process and evaporation process of each droplet are tracked respectively. Different from the liquid phase, the gas phase is regarded as a continuous phase and the Navier-Stokes equations are adopted for calculation. Thereafter, coupling calculations of two phase are performed to determine the concentration field and temperature field of the LNG liquid pipeline leakage. As a supplement to this research, the influence of wind speed on LNG leakage and diffusion process is analysed in detail. Finally, the numerical simulation method is applied to a coastal LNG terminal in northern China to determine the distribution of natural gas concentration and temperature, as well as delimit the combustion range. The results can provide scientific reference for the delimitation of risky zones and the formulation of emergency response strategy.


Author(s):  
Sergey A. Zanochuev ◽  
Alexander B. Shabarov

Within the objectives of predicting the composition and properties of the produced fluid during the development of oil and gas condensate fields, this article proposes an experimental method for predicting the composition and properties of the produced fluid. In addition, the authors show its practical use in a situation where the liquid phase (precipitated condensate or oil) is filtered together with the gas phase. Based on the proposed approach, experimental data were obtained on changes in the current gas saturation of the formation, as well as on changes in the composition and properties of the produced fluid during field development for depletion. The studies make use of the real reservoir fluid samples and the data from the results of stream experiments, in order to determine the relative phase permeabilities.


2001 ◽  
Vol 4 (04) ◽  
pp. 289-296
Author(s):  
Holger F. Thern ◽  
Songhua Chen

Summary Accurate estimates of porosity, fluid saturations, and in-situ gas properties are critical for the evaluation of a gas reservoir. By combining data from a dual wait-time (DTW) nuclear magnetic resonance (NMR) log and a density log, these properties can be determined more reliably than by either of the data alone. The density and NMR dual wait-time (DDTW) technique, introduced in this paper, is applicable to reservoirs where the pore-filling fluid consists of a liquid phase and a gas phase. The low proton density of the gas phase causes a reduction in the NMR signal strength resulting in underestimation of the apparent porosity. The polarization for different wait-times depends on the spin-lattice relaxation time of each fluid and may cause additional NMR porosity underestimation. The density log, on the other hand, delivers a porosity that is overestimated because of the presence of a gas phase. These data, together with known correlations for gas properties, yield a robust approach for the gas-zone porosity, f, and the flushed zone gas saturation, Sg, xo. DDTW also derives gas properties including the in-situ gas density, ?g, as well as the two NMR-related properties, hydrogen index, IH, g, and spin-lattice relaxation time, T1g. Two field examples illustrate the method, and an error propagation study shows the reliability of the technique. Introduction NMR well logging yields information about fluid and rock properties. Depending on the goal of the investigation, various NMR measurement procedures are employed. Differences in the acquisition pulse sequence - including the wait-time (tw) between the echo-train measurements - characterize these procedures. Common evaluation techniques estimate different petrophysical properties, such as incremental and total porosities or movable (fm, NMR) and irreducible (fir, NMR) fluid fractions. More sophisticated methods separate the response of multiple fluids for hydrocarbon typing and saturation estimation. DTW NMR Log. Water as the wetting phase is dominated by surface relaxation and usually has a shorter T1 than hydrocarbons. DTW NMR uses the T1 contrast between aqueous fluid and hydrocarbon phases to achieve partial or full polarization for different fluid phases. The DTW log acquires two echo trains with a long (tw, L) and a short (tw, S) wait-time in a single pass; tw, L is chosen to fully polarize both water and hydrocarbon, and tw, S is sufficiently long to fully polarize the water fraction, while the hydrocarbon fraction is only partially polarized, causing porosity underestimation. An interpretation technique for DTW NMR data - used mainly qualitatively - is the differential spectrum method (DSM).1 A successful quantitative evaluation technique is the time domain analysis (TDA).2 Both techniques require the calculation of either differential echo signals or differential T2 spectra, where the spectra are derived from echo-train data by inversion. The differential signals are significantly weaker than the original signal, and the noise level increases because the incoherent noise of the echo trains is added. Differential data, therefore, are unfavorable in terms of their signal-to-noise ratio (SNR). SNR often limits the applicability of evaluation techniques that are based solely on NMR data. Particularly when coupled with low hydrocarbon saturation and the low proton density of a gas phase, poor SNR is the limiting factor in estimating accurate reservoir properties. Density Log. The density log provides a bulk density, ?b, of the investigated formation. Additional information about the density of the rock matrix and formation fluids determines the density porosity fr. An established method to evaluate gas-bearing formations combines the apparent porosities provided by the density and the neutron logging tools. For many data sets, however, this method yields only semiquantitative results because of the strong influence of rock mineralogy on the neutron measurement. Theory The porosity of clean formations bearing only liquid-phase components can be accurately quantified by either the NMR or the density logging tool. However, the tool's responses are significantly altered by the presence of a gas phase, causing the estimated porosities to deviate from the formation porosity. Three main effects cause the deviation.Low IH, g decreases the NMR porosity.Partial polarization Pg<1 decreases the NMR-derived porosity, if the wait-time between the NMR measurements is insufficiently long.Low ?g increases the density porosity. The characterization of a hydrocarbon gas by three key properties, ?g, IH, g, and T1g, effectively quantifies these effects. DTW NMR Log. In a two-phase system with one gas and one liquid phase, the total NMR porosity ft, NMR is expressed byEquation 1 where the first term on the right side describes the contribution of the gas phase and the second term describes the contribution of the liquid phase. The polarization P (with P?[0,1]) quantifies the reduction of the NMR signal caused by underpolarization. The termsEquation 2Equation 3 describe the polarization of the liquid and gas phases, respectively. Some approximations can be made for common reservoir conditions.IH, l is close to 1 for an aqueous-phase liquid and most oleic-phase liquids. In the presence of a light liquid hydrocarbon, its value can be slightly smaller (IH, l =0.8-1).If tw 3T1, the polarization is nearly unity. Typical tw values range from 1 to several seconds, whereas typical T1 values for formation water range from a few milliseconds to a few seconds. However, in a porous medium saturated with two fluid phases, the wetting phase (i.e., water) saturates smaller pores, and the maximum T1 of the aqueous-phase liquid usually reduces to values less than several hundreds of milliseconds.3 Thus, Pl is unity for aqueous-phase liquids in a two-phase system, when data are acquired with typical wait-time parameters in an MRIL®* DTW acquisition (i.e., tw, S,˜1–2 seconds and tw, L,˜6–10 seconds).


Author(s):  
Vladimir A. Nikiforov ◽  
Elena I. Laguseva ◽  
Evgeny A. Pankratov ◽  
Ilya S. Zhokhov

The brief characteristics of the reaction system of pilot production of fatty-aromatic polyamides based on aliphatic diamines (acylated monomers) and dicarboxylic acid dichloroanhydrides (acylating monomers) by the method of gas-liquid polycondensation in a highly turbulized foamy hydrodynamic mode are described. Technological scheme and rational instrumentation of the technology of polyterephthalamides, the reactor unit (reactor-fibridator), which includes a two-stage reaction chamber and a gas phase generating chamber coaxially located under it, chemistry and operating principle of the facility are shown. The method combines the chemical processes of polyamidation with the physical processes of the reaction molding of polyamide fibrids or gas-structural elements used in the technology of gas-filled plastics. The reaction system of the method includes three structural units: a liquid phase (aqueous alkaline solution of aliphatic, cycloaliphatic and fatty-aromatic diamines), a gas phase (superheated vapours of aromatic and aliphatic dicarboxylic acid dichloroanhydrides, dispersed in a dynamic airflow or inert gas) and an interface (gas-liquid interface). Gas-liquid polyamidation is accompanied by phase formation: the reaction system during the process becomes three-phase system – the swollen polymer forms a solid mobile phase (target product), which acts as a foamy mode stabilizer, which allows technological process to proceed at optimal linear gas phase rates of 30–35 m/s (unlike classical two-phase foamy mode – 4 m/s). A polyamidation mechanism at the liquid-gas interface is proposed, which includes two versions of the process (adsorption and condensation) depending on the ratio of the temperature characteristics of the acylated monomer and the liquid phase carrying the acylating monomer. Analysis of the proposed versions of the mechanism allows you to make an engineering decision on the expediency of organizing a cycle in the liquid phase. Possible criteria for predicting the versions of the mechanism and examples of reaction systems with condensation and absorption versions of polyamidation are given.


Author(s):  
S. K. Aggarwal ◽  
S. Chitre

Computations are reported on the detailed structures of unconfined turbulent combusting sprays. Favre-averaged gas-phase equations are used and a k-ε-g turbulence closure model is utilized. Using a conserved scalar approach and assuming the form of probability density function to be a clipped Gaussian, the thermodynamic scalar variables are calculated from a partial equilibrium model. The major features of the liquid-phase model are that a stochastic random-walk approach is used to represent the effect of gas-phase turbulence on droplet trajectory and vaporization, the variable-property effects are considered in a comprehensive manner, and a conduction-limit mode is employed to represent the transient liquid-phase processes. This two-phase model is used to study the structure of an unconfined methanol spray flame. Important observation is that the turbulent spray flame structure is significantly different, both quantitatively and qualitatively, from that of the corresponding gaseous diffusion flame. In addition, the spray flame exhibits a strong sensitively to the transient liquid-phase processes. The latter result is interesting since, in an earlier computational study for an evaporating spray, the vaporization behavior for the same liquid fuel indicated only a weak sensitivity to these processes.


Author(s):  
M. J. Pettigrew ◽  
B. Besner ◽  
N. W. Mureithi ◽  
T. Lafrance ◽  
J. M. Patrick

Flow-induced vibration in two-phase flows requires the knowledge of flow regime and detailed flow characteristics. This paper outlines the development of fiber-optic probes to measure void fraction, local flow velocity and characteristic size (i.e., bubble diameter) of the two-phase mixture. The principle of operation of such probes is based on the difference in index of refraction between the liquid phase and the gas phase when in contact with a fiber-optic probe supplied with a laser light. The reflected signal levels for the gas phase and the liquid phase are very different thus providing a reliable measure of void fraction. The paper describes the development of fiber-optic probes for measurements of internal two-phase flow in pipes and of external flow across a tube bundle. The use of double probes allows the measurements of local flow velocity and bubble size. Some detail measurements of flow in the gap between tubes in cross flow are presented. The fabrication of the very small and fragile probes required much development effort. The paper describes the difficulties and the solutions to assure good quality probes. Some data processing and data interpretation issues are also discussed.


Author(s):  
Deqi Chen ◽  
Qinghua Wang ◽  
Zhengang Duan ◽  
Liang-ming Pan

In this paper the study focuses on a visual investigation on the gas-water two-phase flow in a vertical circular narrow channel with 2 mm inner diameter under atmospheric pressure. Experiments were carried out with different working conditions, including different gases as gas-phase working fluids such as nitrogen, air, carbon dioxide and argon, and the gas flow rate, Q, varied between 0 ml/s (single liquid phase flow) to 9.0 ml/s, and the liquid mass flux, G, varied between 581.3 kg/m2s to 3201.8 kg/m2s. The influence of liquid mass flux, gas flow rate as well as Eo number and Mo number (using these two non-dimensional parameters to specify the effect of gas-phase properties) on the fluctuation of pressure drop and mass flux were investigated in this study. It is found that the pressure drop increases along with increasing liquid-phase flow rate with identical other working conditions, and the corresponding flow patterns are slug flow even though the liquid-phase flow rates are different. However, the pressure drop decreases at first and then increases along with gas-phase flow rate, with constant liquid flow rate (liquid mass flux), and the corresponding flow patterns include slug flow, slug-annular flow and annular flow. Based on the experimental result, it is also found that the smaller Eo number and Mo number of the gas-phase working fluid, the smaller the fluctuations of the pressure drop and mass flux would be due to the gas-phase working fluid is different.


Author(s):  
Yuki Nakamura ◽  
Kota Fujiwara ◽  
Wataru Kikuchi ◽  
Shimpei Saito ◽  
Tomohisa Yuasa ◽  
...  

In severe accidents of nuclear power plants, large amounts of gas containing radioactive particles are generated. In the process of gas release into the atmosphere, it is needed to suppress the leakage of radioactive material. The gas is decontaminated by moving radioactive particles from the gas phase to the liquid phase. This effect of capturing particles is called pool scrubbing, and it has been verified great decontamination effect. Therefore, it is extremely important to analyze the effect in evaluating the influence to the environment. But study on its principle is not carried out sufficiently. And also we don’t have enough experimental date to analyze the effect. The purpose of this study is to clarify the gas-liquid two-phase flow behavior which is important in elucidating the mechanism of pool scrubbing. Particularly, this study focused on the behavior of bubble generation and breakup after being injected from the nozzle and the flow structure of rising bubbles in the still water. Furthermore, we evaluate the validity of the model used in the existing severe accidents analysis code such as the MELCOR by comparing the model with experimental data. We measure the gas phase jet injected from the upward nozzle inserted to a test water tank. Nozzle diameter, gas phase flow rate, liquid phase temperature, and water depth were used as parameters. Bubble behavior was observed via a high-speed camera. The bubble rising speed, bubble distribution and void fraction were measured by a wire mesh sensor. In previous studies, experiments using non-condensable gas in normal temperature water have been mainly conducted. In order to conduct the experiment under conditions that simulate actual equipment, steam which is a condensable gas was used in this study. Moreover, it is assumed that thermal stratification is formed in the pressure suppression pool during severe accidents. To reproduce this situation, thermal stratification is formed in the test water tank. For bubble behavior and flow phenomenon, the result of using non-condensable gas was compared with that using steam. We consider the influence of formation of a thermal stratification. As described above, the flow phenomenon in the pool scrubbing was visualized and measured. Finally, we discuss the validity of the analysis code by comparing the calculation formula and model in the analysis code with the experiment data.


Author(s):  
Liping Pang ◽  
Shangmin Li ◽  
Hu Yuan ◽  
Liqiang Duan

Abstract When the supercritical boiler is working at low load during flexible operation, the uneven distribution of the gas-liquid flow at the intermediate header may affect the safety of the water-cooled wall at the vertical parallel panels. In order to improve the uniformity of gas-liquid flow distribution in the water-cooled wall of intermediate header and study the internal flow mechanism, a flute inside the header is applied with parallel vertical parallel channels and experiments under different operating conditions are conducted to verify the effectiveness of this geometrical structure. The flow pattern in the experiment belongs to stratified and wavy flow. Computational fluid dynamic (CFD) simulation is conducted in order to investigate two-phase flow distribution behavior inside a flute header. It was found that the radial gas phase distribution in the flute tube shows a symmetrical relationship, and there are two vortexes in opposite directions. With the increasing distance from the inlet, the uniformity of the gas phase distribution becomes even. The gravity is greater than the drag force, which has effect on the two-phase flow distribution. The gas phase velocity has been improved inside flute section and liquid phase flow has more even flow distribution along annular section. It makes liquid phase sent to far end of flute header. That benefits two-phase flow distribution along 10 parallel channels equally.


Author(s):  
Wataru Kikuchi ◽  
Kota Fujiwara ◽  
Yuki Nakamura ◽  
Shimpei Saito ◽  
Tomohisa Yuasa ◽  
...  

In order to decrease the leakage and diffusion of Fission Products (FPs) in a severe accident (SA) of nuclear power plants, BWR have a suppression chamber filled with water to decontaminate the polluted air from the reactor vessel when emergency ventilation is done. It’s called pool scrubbing having a function of decontamination effect that transfer particles from gas to liquid phase by blowing gas containing FP into water. decontamination factor (DF) which is an index of decontamination performance evaluation of pool scrubbing is predicted and calculated by using a flow model in the existing analysis model such as MELCOR code. Evaluation of the DF by pool scrubbing is important in analyzing SA progress of nuclear power plants. For this reason, validation of flow model and decontamination model is important. It is necessary to validate whether the analysis result of each model matches the actual phenomenon. Despite of these needs, generic experimental data on gas-liquid two phase flow including aerosol is insufficient in confirming the validity of existing model. Therefore, the aim of this study is to investigate aerosol behavior in air jet and its relation to bubbly flow structure during pool scrubbing. This is to obtain the flow structure when air - aerosol released to the pool part and are obtained. Transition behavior of particles from the gas phase into the liquid phase was observed by high-speed camera. In addition, the effect of aerosol on void fraction in the pool was measured by wire mesh sensor from the nozzle exit to the water surface ware also observed. Ejecting air-aerosol from the nozzle to the pool part at various flow rates, visualization of bubble diameter, bubble aspect ratio, void fraction and the gas phase velocity were done by using image processing and a wire-mesh sensor. From these results, we compared the parameters by the presence or absence of aerosol. DF is also compared with the model used in the MELCOR code.


Sign in / Sign up

Export Citation Format

Share Document