scholarly journals Erratum to: Higher spin glueballs from functional methods

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Markus Q. Huber ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz
2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Markus Q. Huber ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz

AbstractWe calculate the glueball spectrum for spin up to $$J=$$ J = 4 and positive charge parity in pure Yang–Mills theory. We construct the full bases for $$J=$$ J = 0, 1, 2, 3, 4 and discuss the relation to gauge invariant operators. Using a fully self-contained truncation of Dyson–Schwinger equations as input, we obtain ground states and first and second excited states from extrapolations of the eigenvalue curves. Where available, we find good quantitative agreement with lattice results


1994 ◽  
Vol 72 (06) ◽  
pp. 985-985 ◽  
Author(s):  
Boguslaw Lipinski ◽  
Scott Federman ◽  
Andrzej S Krolewski

2020 ◽  
Author(s):  
David Zanders ◽  
Goran Bačić ◽  
Dominique Leckie ◽  
Oluwadamilola Odegbesan ◽  
Jeremy M. Rawson ◽  
...  

Attempted preparation of a chelated Co(II) β-silylamide re-sulted in the unprecedented disproportionation to Co(0) and a spirocyclic cobalt(IV) bis(β-silyldiamide): [Co[(NtBu)2SiMe2]2] (1). Compound 1 exhibits a room temperature magnetic moment of 1.8 B.M and a solid state axial EPR spectrum diagnostic of a rare S = 1/2 configuration. Semicanonical coupled-cluster calculations (DLPNO-CCSD(T)) revealed the doublet state was clearly preferred (–27 kcal/mol) over higher spin configurations for which density functional theory (DFT) showed no energetic preference. Unlike other Co(IV) complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self-limiting monolayer in initial atomic layer deposition (ALD) surface saturation tests. The ease of synthesis and high-stability make 1 an attractive starting point to begin investigating otherwise inaccessible Co(IV) intermediates and synthesizing new materials.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Damon J. Binder ◽  
Shai M. Chester ◽  
Max Jerdee ◽  
Silviu S. Pufu

Abstract We study the space of 3d $$ \mathcal{N} $$ N = 6 SCFTs by combining numerical bootstrap techniques with exact results derived using supersymmetric localization. First we derive the superconformal block decomposition of the four-point function of the stress tensor multiplet superconformal primary. We then use supersymmetric localization results for the $$ \mathcal{N} $$ N = 6 U(N)k × U(N + M)−k Chern-Simons-matter theories to determine two protected OPE coefficients for many values of N, M, k. These two exact inputs are combined with the numerical bootstrap to compute precise rigorous islands for a wide range of N, k at M = 0, so that we can non-perturbatively interpolate between SCFTs with M-theory duals at small k and string theory duals at large k. We also present evidence that the localization results for the U(1)2M × U (1 + M)−2M theory, which has a vector-like large-M limit dual to higher spin theory, saturates the bootstrap bounds for certain protected CFT data. The extremal functional allows us to then conjecturally reconstruct low-lying CFT data for this theory.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Sizheng Ma ◽  
Matthew Giesler ◽  
Mark A. Scheel ◽  
Vijay Varma
Keyword(s):  

2021 ◽  
pp. 136436
Author(s):  
Stephon Alexander ◽  
Leah Jenks ◽  
Evan McDonough
Keyword(s):  

1975 ◽  
Vol 30 (5) ◽  
pp. 656-671
Author(s):  
W. Bauhoff

AbstractThe mass eigenvalue equation for mesons in nonlinear spinor theory is derived by functional methods. In second order it leads to a spinorial Bethe-Salpeter equation. This is solved by a variational method with high precision for arbitrary angular momentum. The results for scalar mesons show a shift of the first order results, obtained earlier. The agreement with experiment is improved thereby. An excited state corresponding to the η' is found. A calculation of a Regge trajectory is included,too.


Sign in / Sign up

Export Citation Format

Share Document