scholarly journals Impact of $$b \rightarrow s \ell \ell $$ anomalies on rare charm decays in non-universal $$Z'$$ models

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Ashutosh Kumar Alok ◽  
Neetu Raj Singh Chundawat ◽  
Dinesh Kumar

AbstractIn this work, we study the impact of $$b \rightarrow s \ell \ell $$ b → s ℓ ℓ , $$B_s - \bar{B_s}$$ B s - B s ¯ mixing and neutrino trident measurements on observables in decays induced by $$c \rightarrow u $$ c → u transition in the context of a non-universal $$Z'$$ Z ′ model which generates $$C^{\mathrm{NP}}_{9} <0$$ C 9 NP < 0 and $$C^{\mathrm{NP}}_9 = - \,C^{\mathrm{NP}}_{10} $$ C 9 NP = - C 10 NP new physics scenarios at the tree level. We inspect the effects on $$D^0 \rightarrow \pi ^0 \nu {\bar{\nu }}$$ D 0 → π 0 ν ν ¯ , $$D^+ \rightarrow \pi ^+ \nu {\bar{\nu }}$$ D + → π + ν ν ¯ and $$B_c \rightarrow B^+ \nu {\bar{\nu }} $$ B c → B + ν ν ¯ decays which are induced by the quark level transition $$c \rightarrow u \nu {\bar{\nu }}$$ c → u ν ν ¯ . The fact that the branching ratios of these decays are negligible in the standard model (SM) and the long distance effects are relatively smaller in comparison to their charged dileptons counterparts, they are considered to provide genuine null-tests of SM. Therefore the observation of these modes at the level of current as well as planned experimental sensitivities would imply unambiguous signature of new physics. Using the constraints on $$Z'$$ Z ′ couplings coming from a combined fit to $$b \rightarrow s \ell \ell $$ b → s ℓ ℓ , $$\varDelta M_s$$ Δ M s and neutrino trident data, we find that any meaningful enhancement over the SM value is ruled out in the considered framework. The same is true for $$D - {\bar{D}}$$ D - D ¯ mixing observable $$\varDelta M_D$$ Δ M D along with $$D^0 \rightarrow \mu ^+ \mu ^-$$ D 0 → μ + μ - and $$D^+ \rightarrow \pi ^+ \mu ^+ \mu ^-$$ D + → π + μ + μ - decay modes which are induced through $$c \rightarrow u \mu ^+ \mu ^-$$ c → u μ + μ - transition.

2020 ◽  
Vol 35 (01) ◽  
pp. 1930018
Author(s):  
Diego Guadagnoli

This paper describes the work pursued in the years 2008–2013 on improving the Standard Model prediction of selected flavor-physics observables. The latter includes: (1) [Formula: see text], that quantifies indirect CP violation in the [Formula: see text] system and (2) the very rare decay [Formula: see text], recently measured at the LHC. Concerning point (1), the paper describes our reappraisal of the long-distance contributions to [Formula: see text],[Formula: see text] that have permitted to unveil a potential tension between CP violation in the [Formula: see text]- and [Formula: see text]-system. Concerning point (2), the paper gives a detailed account of various systematic effects pointed out in Ref. 4 and affecting the Standard Model [Formula: see text] decay rate at the level of 10% — hence large enough to be potentially misinterpreted as nonstandard physics, if not properly included. The paper further describes the multifaceted importance of the [Formula: see text] decays as new physics probes, for instance how they compare with [Formula: see text]-peak observables at LEP, following the effective-theory approach of Ref. 5. Both cases (1) and (2) offer clear examples in which the pursuit of precision in Standard Model predictions offered potential avenues to discovery. Finally, this paper describes the impact of the above results on the literature, and what is the further progress to be expected on these and related observables.


2014 ◽  
Vol 35 ◽  
pp. 1460413
Author(s):  
GIANLUIGI CIBINETTO ◽  

CP violation in charm decays is expected to be very small in the Standard Model, at the level of 0.1% or less. A sizable excess of CP violation with respect to the Standard Model predictions could be a signature of new physics. We report on recent searches for CP violation in charm meson decays at BABAR and Belle experiments. In particular we report a lifetime ratio analysis of D0 → K+K−, π+π− with respect to D0 → K−π+ decays, which is sensitive to [Formula: see text] mixing and CP violation. We report also on searches for CPV in the 3-body D+ → K+K−π+ decay and for decay modes with a [Formula: see text] in the final state, such as [Formula: see text].


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Stefan Schacht ◽  
Amarjit Soni

Abstract As a consequence of the Ward identity for hadronic matrix elements, we find relations between the differential decay rates of semileptonic decay modes with the underlying quark-level transition b → cτν, which are valid in scalar models. The decay-mode dependent scalar form factor is the only necessary theoretical ingredient for the relations. Otherwise, they combine measurable decay rates as a function of the invariant mass-squared of the lepton pair q2 in such a way that a universal decay-mode independent function is found for decays to vector and pseudoscalar mesons, respectively. This can be applied to the decays $$ B\to {D}^{\ast}\tau v,{B}_s\to {D}_s^{\ast}\tau v,{B}_c\to J/\psi \tau v $$ B → D ∗ τv , B s → D s ∗ τv , B c → J / ψτv and B → Dτv, Bs → Dsτv, Bc → ηcτv, with implications for R(D(*)), $$ R\left({D}_s^{\left(\ast \right)}\right) $$ R D s ∗ , R(J/ψ), R(ηc), and ℬ(Bc → τv). The slope and curvature of the characteristic q2-dependence is proportional to scalar new physics parameters, facilitating their straight forward extraction, complementary to global fits.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Daniele Barducci ◽  
Enrico Bertuzzo ◽  
Andrea Caputo ◽  
Pilar Hernandez ◽  
Barbara Mele

Abstract We consider an extension of the Standard Model with two right-handed singlet fermions with mass at the electroweak scale that induce neutrino masses, plus a generic new physics sector at a higher scale Λ. We focus on the effective operators of lowest dimension d = 5, which induce new production and decay modes for the singlet fermions. We assess the sensitivity of future Higgs Factories, such as FCC-ee, CLIC-380, ILC and CEPC, to the coefficients of these operators for various center of mass energies. We show that future lepton colliders can test the cut-off of the theory up to Λ ≃ 500–1000 TeV, surpassing the reach of future indirect measurements of the Higgs and Z boson widths. We also comment on the possibility of determining the underlying model flavor structure should a New Physics signal be observed, and on the impact of higher dimensional d = 6 operators on the experimental signatures.


2021 ◽  
Vol 36 (04) ◽  
pp. 2130002
Author(s):  
Hector Gisbert ◽  
Marcel Golz ◽  
Dominik Stefan Mitzel

Rare charm decays offer the unique possibility to explore flavor-changing neutral-currents in the up-sector within the Standard Model and beyond. Due to the lack of effective methods to reliably describe its low energy dynamics, rare charm decays have been considered as less promising for long. However, this lack does not exclude the possibility to perform promising searches for New Physics per se, but a different philosophy of work is required. Exact or approximate symmetries of the Standard Model allow to construct clean null-test observables, yielding an excellent road to the discovery of New Physics, complementing the existing studies in the down-sector. In this review, we summarize the theoretical and experimental status of rare charm [Formula: see text] transitions, as well as opportunities for current and future experiments such as LHCb, Belle II, BES III, the FCC-ee and proposed tau-charm factories. We also use the most recent experimental results to report updated limits on lepton-flavor conserving and lepton-flavor violating Wilson coefficients.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Rafael Aoude ◽  
Tobias Hurth ◽  
Sophie Renner ◽  
William Shepherd

Abstract We investigate the information that can be gained by including flavour data in fits of the Standard Model Effective Field Theory (SMEFT) with the assumption of Minimal Flavour Violation (MFV), allowing — as initial conditions at the high scale — leading terms in spurionic Yukawas only. Starting therefore from a theory with no tree level flavour changing neutral currents at the scale of new physics, we calculate effects in flavour changing processes at one loop, and the resulting constraints on linear combinations of SMEFT coefficients, consistently parameterising the electroweak parameters and the CKM within the SMEFT. By doing a global fit including electroweak, Higgs and low energy precision measurements among others, we show that flavour observables put strong constraints on previously unconstrained operator directions. The addition of flavour data produces four independent constraints at order TeV or above on otherwise flat directions; reducing to three when complete U(3)5 flavour symmetry is assumed. Our findings demonstrate that flavour remains a stringent test for models of new physics, even in the most flavourless scenario.


2018 ◽  
Vol 46 ◽  
pp. 1860046 ◽  
Author(s):  
Dayong Wang

Many models beyond the Standard Model, motivated by the recent astrophysical anomalies, predict a new type of weak-interacting degrees of freedom. Typical models include the possibility of the low-mass dark gauge bosons of a few GeV and thus making them accessible at the BESIII experiment running at the tau-charm region. The BESIII has recently searched such dark bosons in several decay modes using the high statistics data set collected at charmonium resonaces. This talk will summarize the recent BESIII results of these dark photon searches and related new physics studies.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850194
Author(s):  
Aritra Biswas ◽  
Sanjoy Mandal ◽  
Nita Sinha

We show that for a heavy vector-like quark model with a down type isosinglet, branching ratio for [Formula: see text] decay is enhanced by more than [Formula: see text] as compared to that in the Standard model when QCD corrections to next-to-leading order are incorporated. In a left–right symmetric model (LRSM) along with a heavy vector-like fermion, enhancement of this order can be achieved at the bare (QCD uncorrected) level itself. We propose that a measurement of the photon polarization could be used to signal the presence of such new physics in spite of the large long distance effects. We find that there is a large region within the allowed parameter space of the model with a vector-like quark and an additional left–right symmetry, where, the photon polarization can be dominantly right-handed.


1989 ◽  
Vol 04 (28) ◽  
pp. 2757-2766 ◽  
Author(s):  
THOMAS G. RIZZO

Although absent at the tree level in models with only doublet and singlet Higgs representations, the WZH coupling can be induced at the one-loop level. We examine the size of this induced coupling in the two Higgs doublet model due to fermion as well as Higgs/gauge boson loops. Such couplings could provide a new mechanism for charged Higgs production at colliders and are ‘backgrounds’ to new physics beyond the Standard Model. We find, however, that these couplings are very weak for all regions of the parameter space explored.


Sign in / Sign up

Export Citation Format

Share Document