scholarly journals Cold atmospheric plasma technology for removal of organic micropollutants from wastewater—a review

2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Amit Kumar ◽  
Nikola Škoro ◽  
Wolfgang Gernjak ◽  
Nevena Puač

Abstract Water bodies are being contaminated daily due to industrial, agricultural and domestic effluents. In the last decades, harmful organic micropollutants (OMPs) have been detected in surface and groundwater at low concentrations due to the discharge of untreated effluent in natural water bodies. As a consequence, aquatic life and public health are endangered. Unfortunately, traditional water treatment methods are ineffective in the degradation of most OMPs. In recent years, advanced oxidation processes (AOPs) techniques have received extensive attention for the mineralization of OMPs in water in order to avoid serious environmental problems. Cold atmospheric plasma discharge-based AOPs have been proven a promising technology for the degradation of non-biodegradable organic substances like OMPs. This paper reviews a wide range of cold atmospheric plasma sources with their reactor configurations used for the degradation of OMPs (such as organic dyes, pharmaceuticals, and pesticides) in wastewater. The role of plasma and treatment parameters (e.g. input power, voltage, working gas, treatment time, OMPs concentrations, etc.) on the oxidation of various OMPs are discussed. Furthermore, the degradation kinetics, intermediates compounds formed by plasma, and the synergetic effect of plasma in combination with a catalyst are also reported in this review. GraphicAbstract

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivia Jones ◽  
Xiaoqian Cheng ◽  
Saravana R. K. Murthy ◽  
Lawan Ly ◽  
Taisen Zhuang ◽  
...  

AbstractCholangiocarcinoma (CCA) is a rare biliary tract cancer with a low five-year survival rate and high recurrence rate after surgical resection. Currently treatment approaches include systemic chemotherapeutics such as FOLFIRINOX, a chemotherapy regimen is a possible treatment for severe CCA cases. A limitation of this chemotherapy regimen is its toxicity to patients and adverse events. There exists a need for therapies to alleviate the toxicity of a FOLFIRINOX regimen while enhancing or not altering its anticancer properties. Cold atmospheric plasma (CAP) is a technology with a promising future as a selective cancer treatment. It is critical to know the potential interactions between CAP and adjuvant chemotherapeutics. In this study the aim is to characterize the efficacy of FOLFIRINOX and CAP in combination to understand potential synergetic effect on CCA cells. FOLFIRINOX treatment alone at the highest dose tested (53.8 µM fluorouracil, 13.7 µM Leucovorin, 5.1 µM Irinotecan, and 3.7 µM Oxaliplatin) reduced CCA cell viability to below 20% while CAP treatment alone for 7 min reduced viability to 3% (p < 0.05). An analysis of cell viability, proliferation, and cell cycle demonstrated that CAP in combination with FOLFIRINOX is more effective than either treatment alone at a lower FOLFIRINOX dose of 6.7 µM fluorouracil, 1.7 µM leucovorin, 0.6 µM irinotecan, and 0.5 µM oxaliplatin and a shorter CAP treatment of 1, 3, or 5 min. In conclusion, CAP has the potential to reduce the toxicity burden of FOLFIRINOX and warrants further investigation as an adjuvant therapy.


2019 ◽  
Vol 8 (11) ◽  
pp. 1930 ◽  
Author(s):  
Bih-Show Lou ◽  
Chih-Ho Lai ◽  
Teng-Ping Chu ◽  
Jang-Hsing Hsieh ◽  
Chun-Ming Chen ◽  
...  

Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ treatment time, were applied to examine the antimicrobial activity against Escherichia coli (E. coli). CAPJ treatment time was found to be the most influential parameter in its antimicrobial ability by evaluation of signal to noise ratios and analysis of variance. 100% bactericidal activity was achieved under the optimal bactericidal activity parameters including the application voltage of 8.5 kV, CAPJ-sample distance of 10 mm, Ar gas flow rate of 500 sccm, and CAPJ treatment time of 300 s, which confirms the efficacy of the Taguchi method in this design. In terms of the mechanism of CAPJ’s antimicrobial ability, the intensity of hydroxyl radical produced by CAPJ positively correlated to its antimicrobial efficiency. The CAPJ antimicrobial efficiency was further evaluated by both DNA double-strand breaks analysis and scanning electron microscopy examination of CAPJ treated bacteria. CAPJ destroyed the cell wall of E. coli and further damaged its DNA structure, thus leading to successful killing of bacteria. This study suggests that optimal conditions of CPAJ can provide effective antimicrobial activity and may be grounds for a novel approach for eradicating bacterial infections.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1259
Author(s):  
Dayun Yan ◽  
Alisa Malyavko ◽  
Qihui Wang ◽  
Kostya (Ken) Ostrikov ◽  
Jonathan H. Sherman ◽  
...  

Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.


2021 ◽  
Author(s):  
Bibo Ge ◽  
Jie Bao ◽  
Jinwu Chen ◽  
Xinzhong Xu ◽  
Juehua Jing ◽  
...  

Abstract Cold atmospheric plasma (CAP) is an emerging technology that has attracted the attention of many researchers in many fields and disciplines. In this study, a dielectric barrier discharge (DBD) plasma device was used to treat Schwann cells (SCs) cultured in vitro, and the effect of CAP on SCs proliferation was evaluated by cell morphology, cell viability, cell cycle and expression of related proteins in SCs. The results showed that the production of intracellular ROS and RNS increased with the increase of CAP treatment time. Compared with the control group, the proliferation of SCs treated with CAP for less than 14 s significantly increased, and and then gradually decreased. Besides, the cell cycle results also showed that more cells were in the S+G2/M phase at this time.The PI3K/Akt/mTOR pathway was activated by low-dose CAP, and the expression of cyclinD1 was consistent with the trend of cell proliferation. In addition, n-acetyl-L-cysteine (NAC) preconditioning significantly prevented CAP-induced cellular changes. In conclusion, low-dose CAP-induced of SCs proliferation was closely related to the PI3K/Akt/mTOR signaling pathway. This study provides a new idea for the treatment of peripheral nerve injury.


2015 ◽  
Vol 81 (4) ◽  
Author(s):  
C. L. Xaplanteris ◽  
E. D. Filippaki ◽  
J. K. Christodoulakis ◽  
M. A. Kazantzaki ◽  
E. P. Tsakalos ◽  
...  

The second half of the 20th century can be characterized and named as the ‘plasma era’, as the plasma gathered scientific interest because of its special physical behaviour. Thus, it was considered as the fourth material state and the plasma physics began to form consequently. In addition to this, many important applications of plasma were discovered and put to use. Especially, in last few decades, there has been an increased interest in the use of cold atmospheric plasma in bio-chemical applications. Until now, thermal plasma has been commonly used in many bio-medical and other applications; however, more recent efforts have shown that plasma can also be produced at lower temperature (close to the environment temperature) by using ambient air in an open space (in atmospheric pressure). However, two aspects remain neglected: firstly, low-temperature plasma production with a large area, and secondly, acquiring the necessary knowledge and understanding the relevant interaction mechanisms of plasma species with microorganisms. These aspects are currently being investigated at the ‘Demokritos’ Plasma Laboratory in Athens, Greece with radio frequency (27.12 MHz and it integer harmonics)-driven sub-atmospheric pressure plasma (100 Pa). The first aspect was achieved with atmospheric plasma being produced at a low temperature (close to the environment temperature) and in a large closed space systems. Regarding the plasma effect on living microorganisms, preliminary experiments and findings have already been carried out and many more have been planned for the near future.


2012 ◽  
Vol 78 (12) ◽  
pp. 4242-4247 ◽  
Author(s):  
Tim Maisch ◽  
Tetsuji Shimizu ◽  
Georg Isbary ◽  
Julia Heinlin ◽  
Sigrid Karrer ◽  
...  

ABSTRACTCandida albicansis one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivatingC. albicansgrowing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10to 5 log10reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation ofCandidabiofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.


2021 ◽  
Author(s):  
Olivia Jones ◽  
Xiaoqian Cheng ◽  
Saravana Murthy ◽  
Lawan Ly ◽  
Taisen Zhuang ◽  
...  

Abstract Cholangiocarcinoma (CCA) is a rare biliary tract cancer with a low five-year survival rate and high recurrence rate after surgical resection. Currently treatment approaches include systemic chemotherapeutics such as FOLFIRINOX, a chemotherapy regimen is a possible treatment for severe CCA cases. A limitation of this chemotherapy regimen is its toxicity to patients and adverse events. There exists a need for therapies to alleviate the toxicity of a FOLFIRINOX regimen while enhancing or not altering its anticancer properties. Cold Atmospheric plasma (CAP) is a technology with a promising future as a selective cancer treatment. It is critical to know the potential interactions between CAP and adjuvant chemotherapeutics. In this study the aim is to characterize the efficacy of FOLFIRINOX and CAP in combination to understand potential synergetic effect on CCA cells. FOLFIRINOX treatment alone at the highest dose tested (53.8 nM fluorouracil, 13.1 nM Leucovorin, 5.1 nM Irinotecan, and 3.7 nM Oxaliplatin) reduced CCA cell viability to below 20% while CAP treatment alone for 7 min reduced viability to 3% (p < 0.05). An analysis of cell viability, proliferation, and cell cycle demonstrated that CAP in combination with FOLFIRINOX is more effective than either treatment alone at a lower FOLFIRINOX dose of 6.73 nM fluorouracil, 1.71 nM leucovorin, 0.63 nM irinotecan, and 0.47 nM oxaliplatin and a shorter CAP treatment of 1, 3, or 5 minutes. In conclusion, CAP has the potential to reduce the toxicity burden of FOLFIRINOX and warrants further investigation as an adjuvant therapy.


Author(s):  
Zhitong Chen ◽  
Richard Wirz

The recent pandemic has greatly stressed supply chains, treatment modalities, and medical resources. Cold atmospheric plasma (CAP) has been used for a wide range of applications in biomedical engineering due to its many components including electrons, charged particles, reactive oxygen species (ROS), reactive nitrogen species (RNS), free radicals, ultraviolet (UV) photons, molecules, electromagnetic fields, physical forces, and electric fields. In this manuscript, we develop CAP devices for COVID-19. Our manuscript indicates the advantages of highlydeployable CAP devices for both sanitation and treatment, without the need for supply chains of special consumables such as hand sanitizers and the like. We hope that this timely research will help engage the broader community of engineers that wish to help the medical community with this pandemic and to prevent and treat future outbreaks.


Sign in / Sign up

Export Citation Format

Share Document