scholarly journals An effect of extra compactified dimensions of space in the molecule $$\hbox {NO}_{{2}}$$

2021 ◽  
Vol 75 (12) ◽  
Author(s):  
Hans-Georg Weber

Abstract The theory of large extra compactified dimensions of space (ADD-model) predicts that gravity may become strong in a compactification space of the size of a molecule and may affect the vibrational motion of a molecule. In triatomic molecules like $$\hbox {NO}_{{2}}$$ NO 2 nuclear dynamics is strongly coupled to electronic dynamics at the intersection of electronic states (conical intersection). We discuss experimental results on $$\hbox {NO}_{{2}}$$ NO 2 which reveal that the collision-free molecule optically excited into a symmetric stretch vibration mode of an electronic state with conical intersection undergoes an irreversible non-radiative transition into an asymmetric stretch vibration mode in combination with a change of the electronic state. We suggest ascribing this irreversible non-radiative transition to a gravitational perturbation on the vibrational motion in $$\hbox {NO}_{{2}}$$ NO 2 . This gravitational perturbation deactivates the upper state of the optical transition. The width of the absorption line is given by the characteristic time of the gravitational perturbation and not by the radiative lifetime of the excited molecular state. Graphical abstract

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Avry Shirakov ◽  
Zeev Burshtein ◽  
Yehoshua Shimony ◽  
Eugene Frumker ◽  
Amiel A. Ishaaya

AbstractWe have measured the fluorescence quantum efficiency in Ti3+:sapphire single crystals between 150 K and 550 K. Using literature-given effective fluorescence lifetime temperature dependence, we show that the zero temperature radiative lifetime is (4.44 ± 0.04) μs, compared to the 3.85 μs of the fluorescence lifetime. Fluorescence lifetime thermal shortening resolves into two parallel effects: radiative lifetime shortening, and non-radiative transition rate enhancement. The first is due to thermally enhanced occupation of a ΔE = 1,700 cm−1 higher (top) electronic state of the upper multiplet, exhibiting a transition oscillator strength of f = 0.62, compared to only 0.013 of the bottom electronic state of the same multiplet. The non-radiative rate relates to multi-phonon decay transitions stimulated by the thermal phonon occupation. Thermal enhancement of the configuration potential anharmonicity is also observed. An empiric expression for the figure-of-anharmonicity temperature dependence is given as $$\hat{{\bf{H}}}$$Hˆ (T) = $$\hat{{\bf{H}}}$$Hˆ (0)(1 + β exp(−ℏωco /kBT )), where $$\hat{{\bf{H}}}$$Hˆ (0) = 0.276, β = 5.2, ℏωco = 908 cm−1, and kB is the Boltzmann constant.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


2016 ◽  
Vol 194 ◽  
pp. 61-80 ◽  
Author(s):  
Lipeng Chen ◽  
Maxim F. Gelin ◽  
Vladimir Y. Chernyak ◽  
Wolfgang Domcke ◽  
Yang Zhao

The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S2(ππ*)–S1(nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system–bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system–bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system–bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S2) is very efficiently quenched by the system–bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode–mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system–bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system–bath coupling as well as the field-matter coupling.


1986 ◽  
Vol 41 (5) ◽  
pp. 719-723 ◽  
Author(s):  
J. Senekowitsch ◽  
P. Rosmus ◽  
H. J. Wemer ◽  
M. Larsson

Potential energy, dipole moment, and electronic transition moment functions for the A 3Πand X3Σ- states of PH have been calculated from highly correlated electronic wavefunctions. The electric dipole moments in the vibrational ground state of PH are calculated to be 0.637 Debye (A 3Π) and 0.403 Debye (X3Σ-). The predicted rates of spontaneous emission between low lying vibrational states of the X state lie in the range of 46 to 109 sec-1 (PH) and 12 to 30 sec-1 (PD). The calculated radiative lifetime of the v' = 0 level in the A 3Π state of 400 ns is lower by about 10 percent than the most recent experimental value. The classical intersection of the 5Σ- and the A 3Πstate has been calculated to lie between v' = 2 and 3 with an expected uncertainty of about 500 cm−1, whereas the onset of the rotationally dependent predissociation lies at v' = 0, J' = 11.


2013 ◽  
Vol 22 ◽  
pp. 298-304
Author(s):  
BEENA BHATIA ◽  
VISHAL PARIHAR

Glasses of the system: xB2O3-10Bi2O3-30Li2O-xPr6O11 where x =1, 1.5 and 2 were prepared by melt quenching technique. Optical absorption and emission spectra have been recorded. The intensities of f-f transition are calculated in term of Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6). Using the fluorescence data and these Ωλ parameters, various radiative properties like transition probability (Arad), branching ratio (βR), radiative lifetime (τR), and stimulated emission cross section (σp), of various emission lines have been evaluated. The branching ratio for 3P0→3H4 transition is 56% and the predicted spontaneous radiative transition probability rates are fairly high 16411 s−1. This is beneficial for lasing emission.


1973 ◽  
Vol 28 (5) ◽  
pp. 717-724 ◽  
Author(s):  
F. J. Comes ◽  
E. H. Fink

Excitation of CO molecules into the lowest vibrational level of the B1Σ+ electronic state by absorption of the (B 1Σ+υ′=0 →X 1Σ+ ,υ′′=0) resonance band at 1150 Å has been studied under various experimental conditions by observing the steady state fluorescence of the (B 1Σ+→A1Π) Angstrom bands. Stern-Volmer plots of the fluorescence intensities at the addition of various foreign gases yielded straight lines whose slopes k̃qм = kqм · τeff were strongly dependent on the CO sample pressure. This effect was found to be due to changes of the effective radiative lifetime of the B 1Σ+υ′=0 because of resonance trapping of the (0,0) band of the (B → X) fluorescence. The CO(B 1Σ+υ′=0) molecules are found to be quenched by He, Ne, Ar, H2 and D2 with effective collision cross sections of 0.23, 0.48, 22.4, 10.7, and 11.4 Å2, respectively, at 298 °K. In addition, an approximate value for the ratio ABA/ (ABA+ABX)of the radiative transition probabilities of the (B → A) and (B → X) transitions could be derived from the measurements.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4221
Author(s):  
Andrei Racu ◽  
Marius Stef ◽  
Gabriel Buse ◽  
Irina Nicoara ◽  
Daniel Vizman

The influence of erbium ion concentration on the optical properties of BaF2:ErF3 crystals was investigated. Four ErF3 concentration (0.05, 0.08, 0.15 and 0.5 mol% ErF3)-doped BaF2 crystals were obtained using the Bridgman technique. Room temperature optical absorption in the 250–850 nm spectral range was measured, and the photoluminescence (PL) and decay times were also investigated. The Judd–Ofelt (JO) approximation was used, taking into account four absorption peaks (at 377, 519, 653 and 802 nm). The JO intensity parameters, Ωt (t = 2, 4, 6), were calculated. The influence of the ErF3 concentration on the JO parameters, branching ratio, radiative transition probability and radiative lifetime were studied. The obtained results were compared with measured values and with those reported in the literature. Under excitation at 380 nm, the well-known green (539 nm) and red (668 nm) emissions were obtained. The calculated and experimental radiative lifetimes were in millisecond range for green and red emissions. The intensity of the PL spectra varied with the Er3+ ion concentration. The emission intensity increased linearly or exponentially, depending on the ErF3 concentration. Under excitation at 290 nm, separate to the green and red emissions, a new UV emission band (at 321 nm) was obtained. Other research has not reported the UV emission or the influence of ErF3 concentration on emission behavior.


2011 ◽  
Vol 233-235 ◽  
pp. 1227-1230 ◽  
Author(s):  
Hao Liang ◽  
Fang Xie

A dendritic type europium complex/silicone rubber has been prepared. According to the luminescence spectrum, the Judd-Ofelt theory was adopted to calculate the intensity parameters Ω2and Ω4. The total radiative transition rate (640.1 s-1), radiative lifetime (1.562 ms) and the stimulated emission cross-sections (46.19×10-22cm2) of the5D0exciting state have been evaluated. Analysis reveals that the europium (III) chelating polymer is promising for use in optical devices.


Sign in / Sign up

Export Citation Format

Share Document