scholarly journals Finding disease outbreak locations from human mobility data

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Frank Schlosser ◽  
Dirk Brockmann

AbstractFinding the origin location of an infectious disease outbreak quickly is crucial in mitigating its further dissemination. Current methods to identify outbreak locations early on rely on interviewing affected individuals and correlating their movements, which is a manual, time-consuming, and error-prone process. Other methods such as contact tracing, genomic sequencing or theoretical models of epidemic spread offer help, but they are not applicable at the onset of an outbreak as they require highly processed information or established transmission chains. Digital data sources such as mobile phones offer new ways to find outbreak sources in an automated way. Here, we propose a novel method to determine outbreak origins from geolocated movement data of individuals affected by the outbreak. Our algorithm scans movement trajectories for shared locations and identifies the outbreak origin as the most dominant among them. We test the method using various empirical and synthetic datasets, and demonstrate that it is able to single out the true outbreak location with high accuracy, requiring only data of $N=4$ N = 4 individuals. The method can be applied to scenarios with multiple outbreak locations, and is even able to estimate the number of outbreak sources if unknown, while being robust to noise. Our method is the first to offer a reliable, accurate out-of-the-box approach to identify outbreak locations in the initial phase of an outbreak. It can be easily and quickly applied in a crisis situation, improving on previous manual approaches. The method is not only applicable in the context of disease outbreaks, but can be used to find shared locations in movement data in other contexts as well.

2021 ◽  
Vol 7 (10) ◽  
pp. eabd6989
Author(s):  
Nicole E. Kogan ◽  
Leonardo Clemente ◽  
Parker Liautaud ◽  
Justin Kaashoek ◽  
Nicholas B. Link ◽  
...  

Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity from 1 March to 30 September 2020. We observe that increases in digital data stream activity anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and deaths also decrease 2 to 4 weeks after NPI implementation, as measured by anonymized, phone-derived human mobility data. We propose a means of harmonizing these data streams to identify future COVID-19 outbreaks. Our results suggest that combining disparate health and behavioral data may help identify disease activity changes weeks before observation using traditional epidemiological monitoring.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008588
Author(s):  
Constanze Ciavarella ◽  
Neil M. Ferguson

The spatial dynamics of epidemics are fundamentally affected by patterns of human mobility. Mobile phone call detail records (CDRs) are a rich source of mobility data, and allow semi-mechanistic models of movement to be parameterised even for resource-poor settings. While the gravity model typically reproduces human movement reasonably well at the administrative level spatial scale, past studies suggest that parameter estimates vary with the level of spatial discretisation at which models are fitted. Given that privacy concerns usually preclude public release of very fine-scale movement data, such variation would be problematic for individual-based simulations of epidemic spread parametrised at a fine spatial scale. We therefore present new methods to fit fine-scale mathematical mobility models (here we implement variants of the gravity and radiation models) to spatially aggregated movement data and investigate how model parameter estimates vary with spatial resolution. We use gridded population data at 1km resolution to derive population counts at different spatial scales (down to ∼ 5km grids) and implement mobility models at each scale. Parameters are estimated from administrative-level flow data between overnight locations in Kenya and Namibia derived from CDRs: where the model spatial resolution exceeds that of the mobility data, we compare the flow data between a particular origin and destination with the sum of all model flows between cells that lie within those particular origin and destination administrative units. Clear evidence of over-dispersion supports the use of negative binomial instead of Poisson likelihood for count data with high values. Radiation models use fewer parameters than the gravity model and better predict trips between overnight locations for both considered countries. Results show that estimates for some parameters change between countries and with spatial resolution and highlight how imperfect flow data and spatial population distribution can influence model fit.


2021 ◽  
Author(s):  
Sebastian A. Müller ◽  
Michael Balmer ◽  
William Charlton ◽  
Ricardo Ewert ◽  
Andreas Neumann ◽  
...  

Epidemiological simulations as a method are used to better understand and predict the spreading of infectious diseases, for example of COVID-19. This paper presents an approach that combines a well-established approach from transportation modelling that uses person-centric data-driven human mobility modelling with a mechanistic infection model and a person-centric disease progression model. The model includes the consequences of different room sizes, air exchange rates, disease import, changed activity participation rates over time (coming from mobility data), masks, indoors vs. outdoors leisure activities, and of contact tracing. The model is validated against the infection dynamics in Berlin (Germany). The model can be used to understand the contributions of different activity types to the infection dynamics over time. The model predicts the effects of contact reductions, school closures/vacations, masks, or the effect of moving leisure activities from outdoors to indoors in fall, and is thus able to quantitatively predict the consequences of interventions. It is shown that these effects are best given as additive changes of the reinfection rate R. The model also explains why contact reductions have decreasing marginal returns, i.e. the first 50% of contact reductions have considerably more effect than the second 50%. Our work shows that is is possible to build detailed epidemiological simulations from microscopic mobility models relatively quickly. They can be used to investigate mechanical aspects of the dynamics, such as the transmission from political decisions via human behavior to infections, consequences of different lockdown measures, or consequences of wearing masks in certain situations. The results can be used to inform political decisions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamil Smolak ◽  
Katarzyna Siła-Nowicka ◽  
Jean-Charles Delvenne ◽  
Michał Wierzbiński ◽  
Witold Rohm

AbstractPredictability of human movement is a theoretical upper bound for the accuracy of movement prediction models, which serves as a reference value showing how regular a dataset is and to what extent mobility can be predicted. Over the years, the predictability of various human mobility datasets was found to vary when estimated for differently processed datasets. Although attempts at the explanation of this variability have been made, the extent of these experiments was limited. In this study, we use high-precision movement trajectories of individuals to analyse how the way we represent the movement impacts its predictability and thus, the outcomes of analyses made on these data. We adopt a number of methods used in the last 11 years of research on human mobility and apply them to a wide range of spatio-temporal data scales, thoroughly analysing changes in predictability and produced data. We find that spatio-temporal resolution and data processing methods have a large impact on the predictability as well as geometrical and numerical properties of human mobility data, and we present their nonlinear dependencies.


2021 ◽  
Author(s):  
Ashleigh Myall ◽  
Robert L. Peach ◽  
Yu Wan ◽  
Siddharth Mookerjee ◽  
Elita Jauneikaite ◽  
...  

ABSTRACTContact tracing is a key tool in epidemiology to identify and control outbreaks of infectious diseases. Existing contact tracing methodologies produce contact maps of individuals based on a binary definition of contact which can be hampered by missing data and indirect contacts. Here, we present a Spatial-temporal Epidemiological Proximity (StEP) model to recover contact maps in disease outbreaks based on movement data. The StEP model accounts for imperfect data by considering probabilistic contacts between individuals based on spatial-temporal proximity of their movement trajectories, creating a robust movement network despite possible missing data and unseen transmission routes. Using real-world data we showcase the potential of StEP for contact tracing with outbreaks of multidrug-resistant bacteria and COVID-19 in a large hospital group in London, UK. In addition to the core structure of contacts that can be recovered using traditional methods of contact tracing, the StEP model reveals missing contacts that connect seemingly separate outbreaks. Comparison with genomic data further confirmed that these recovered contacts indeed improve characterisation of disease transmission and so highlights how the StEP framework can inform effective strategies of infection control and prevention.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaobin Wang ◽  
Yun Tong ◽  
Yupeng Fan ◽  
Haimeng Liu ◽  
Jun Wu ◽  
...  

AbstractSince spring 2020, the human world seems to be exceptionally silent due to mobility reduction caused by the COVID-19 pandemic. To better measure the real-time decline of human mobility and changes in socio-economic activities in a timely manner, we constructed a silent index (SI) based on Google’s mobility data. We systematically investigated the relations between SI, new COVID-19 cases, government policy, and the level of economic development. Results showed a drastic impact of the COVID-19 pandemic on increasing SI. The impact of COVID-19 on human mobility varied significantly by country and place. Bi-directional dynamic relationships between SI and the new COVID-19 cases were detected, with a lagging period of one to two weeks. The travel restriction and social policies could immediately affect SI in one week; however, could not effectively sustain in the long run. SI may reflect the disturbing impact of disasters or catastrophic events on the activities related to the global or national economy. Underdeveloped countries are more affected by the COVID-19 pandemic.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. Cencetti ◽  
G. Santin ◽  
A. Longa ◽  
E. Pigani ◽  
A. Barrat ◽  
...  

AbstractDigital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the spread in real environments. We find that restrictive policies are more effective in containing the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation through their efficiency and cost results in optimized solutions which only consider contacts longer than 15–20 minutes and closer than 2–3 meters to be at risk. Our results show that isolation and tracing can help control re-emerging outbreaks when some conditions are met: (i) a reduction of the reproductive number through masks and physical distance; (ii) a low-delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the inefficacy of a less privacy-preserving tracing involving second order contacts. Our results may inform digital contact tracing efforts currently being implemented across several countries worldwide.


Sign in / Sign up

Export Citation Format

Share Document