ON NON-ZERO MASS SOLUTIONS IN MASSLESS QUANTUM FIELD THEORY WITH CURVED MOMENTUM SPACE

Author(s):  
B. E. J. BODMANN ◽  
S. MITTMANN DOS SANTOS ◽  
TH. A. J. Maris
Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 124
Author(s):  
Vadim Monakhov

We have developed a quantum field theory of spinors based on the algebra of canonical anticommutation relations (CAR algebra) of Grassmann densities in the momentum space. We have proven the existence of two spinor vacua. Operators C and T transform the normal vacuum into an alternative one, which leads to the breaking of the C and T symmetries. The CPT is the real structure operator; it preserves the normal vacuum. We have proven that, in the theory of the Dirac Sea, the formula for the charge conjugation operator must contain an additional generalized Dirac conjugation operator.


A momentum space formulation of curved space–time quantum field theory is presented. Such a formulation allows the riches of momentum space calculational techniques already existing in nuclear physics to be exploited in the application of quantum field theory to cosmology and astrophysics. It is demonstrated that one such technique can allow exact, or very accu­rate approximate, results to be obtained in cases which are intractable in coordinate space. An efficient method of numerical solution is also described.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Parijat Banerjee ◽  
Adwait Gaikwad ◽  
Anurag Kaushal ◽  
Gautam Mandal

Abstract In many quantum quench experiments involving cold atom systems the post-quench phase can be described by a quantum field theory of free scalars or fermions, typically in a box or in an external potential. We will study mass quench of free scalars in arbitrary spatial dimensions d with particular emphasis on the rate of relaxation to equilibrium. Local correlators expectedly equilibrate to GGE; for quench to zero mass, interestingly the rate of approach to equilibrium is exponential or power law depending on whether d is odd or even respectively. For quench to non-zero mass, the correlators relax to equilibrium by a cosine-modulated power law, for all spatial dimensions d, even or odd. We briefly discuss generalization to O(N ) models.


1955 ◽  
Vol 51 (1) ◽  
pp. 113-120 ◽  
Author(s):  
J. C. Polkinghorne

ABSTRACTThe S matrix is expressed in terms of momentum-space operators and its Cayley transform exhibited. A new graphical formalism called O-graphs is developed in which the vertices are temporally ordered and the lines represent real particles. This is used to prove a conjecture of Gupta concerning the relation of real and virtual processes to the Cayley transform. The transformation operator for a semi-infinite time interval is also considered and some of its properties demonstrated. In conclusion, another graphical formalism with temporally ordered vertices is developed and renormalized.


1992 ◽  
Vol 70 (6) ◽  
pp. 463-466
Author(s):  
A. Y. Shiekh

Massless quantum field theory is usually troubled by both ultraviolet and infrared divergences. With the help of analytic continuation, this fact can be exploited to eliminate, or at least reduce the overall number of divergences. This mechanism is investigated within the context of dimensional regularization for the case of massless [Formula: see text] theory in four dimensions.


Sign in / Sign up

Export Citation Format

Share Document