TURING DEGREES AND THE ERSHOV HIERARCHY

Author(s):  
FRANK STEPHAN ◽  
YUE YANG ◽  
LIANG YU
2021 ◽  
Vol 27 (2) ◽  
pp. 220-221
Author(s):  
Cheng Peng

AbstractIn this thesis, we study Turing degrees in the context of classical recursion theory. What we are interested in is the partially ordered structures $\mathcal {D}_{\alpha }$ for ordinals $\alpha <\omega ^2$ and $\mathcal {D}_{a}$ for notations $a\in \mathcal {O}$ with $|a|_{o}\geq \omega ^2$ .The dissertation is motivated by the $\Sigma _{1}$ -elementary substructure problem: Can one structure in the following structures $\mathcal {R}\subsetneqq \mathcal {D}_{2}\subsetneqq \dots \subsetneqq \mathcal {D}_{\omega }\subsetneqq \mathcal {D}_{\omega +1}\subsetneqq \dots \subsetneqq \mathcal {D(\leq \textbf {0}')}$ be a $\Sigma _{1}$ -elementary substructure of another? For finite levels of the Ershov hierarchy, Cai, Shore, and Slaman [Journal of Mathematical Logic, vol. 12 (2012), p. 1250005] showed that $\mathcal {D}_{n}\npreceq _{1}\mathcal {D}_{m}$ for any $n < m$ . We consider the problem for transfinite levels of the Ershov hierarchy and show that $\mathcal {D}_{\omega }\npreceq _{1}\mathcal {D}_{\omega +1}$ . The techniques in Chapters 2 and 3 are motivated by two remarkable theorems, Sacks Density Theorem and the d.r.e. Nondensity Theorem.In Chapter 1, we first briefly review the background of the research areas involved in this thesis, and then review some basic definitions and classical theorems. We also summarize our results in Chapter 2 to Chapter 4. In Chapter 2, we show that for any $\omega $ -r.e. set D and r.e. set B with $D<_{T}B$ , there is an $\omega +1$ -r.e. set A such that $D<_{T}A<_{T}B$ . In Chapter 3, we show that for some notation a with $|a|_{o}=\omega ^{2}$ , there is an incomplete $\omega +1$ -r.e. set A such that there are no a-r.e. sets U with $A<_{T}U<_{T}K$ . In Chapter 4, we generalize above results to higher levels (up to $\varepsilon _{0}$ ). We investigate Lachlan sets and minimal degrees on transfinite levels and show that for any notation a, there exists a $\Delta ^{0}_{2}$ -set A such that A is of minimal degree and $A\not \equiv _T U$ for all a-r.e. sets U.Abstract prepared by Cheng Peng.E-mail: [email protected]


2016 ◽  
Vol 9 (4) ◽  
pp. 810-835 ◽  
Author(s):  
JACOPO AMIDEI ◽  
DUCCIO PIANIGIANI ◽  
LUCA SAN MAURO ◽  
ANDREA SORBI

AbstractThis paper is a continuation of Amidei, Pianigiani, San Mauro, Simi, & Sorbi (2016), where we have introduced the quasidialectical systems, which are abstract deductive systems designed to provide, in line with Lakatos’ views, a formalization of trial and error mathematics more adherent to the real mathematical practice of revision than Magari’s original dialectical systems. In this paper we prove that the two models of deductive systems (dialectical systems and quasidialectical systems) have in some sense the same information content, in that they represent two classes of sets (the dialectical sets and the quasidialectical sets, respectively), which have the same Turing degrees (namely, the computably enumerable Turing degrees), and the same enumeration degrees (namely, the ${\rm{\Pi }}_1^0$ enumeration degrees). Nonetheless, dialectical sets and quasidialectical sets do not coincide. Even restricting our attention to the so-called loopless quasidialectical sets, we show that the quasidialectical sets properly extend the dialectical sets. As both classes consist of ${\rm{\Delta }}_2^0$ sets, the extent to which the two classes differ is conveniently measured using the Ershov hierarchy: indeed, the dialectical sets are ω-computably enumerable (close inspection also shows that there are dialectical sets which do not lie in any finite level; and in every finite level n ≥ 2 of the Ershov hierarchy there is a dialectical set which does not lie in the previous level); on the other hand, the quasidialectical sets spread out throughout all classes of the hierarchy (close inspection shows that for every ordinal notation a of a nonzero computable ordinal, there is a quasidialectical set lying in ${\rm{\Sigma }}_a^{ - 1}$, but in none of the preceding levels).


2019 ◽  
Vol 58 (3) ◽  
pp. 297-319
Author(s):  
N. A. Bazhenov ◽  
B. S. Kalmurzaev

2011 ◽  
Vol 50 (3) ◽  
pp. 279-289
Author(s):  
M. Kh. Faizrakhmanov
Keyword(s):  

2012 ◽  
Vol 12 (01) ◽  
pp. 1250005 ◽  
Author(s):  
MINGZHONG CAI ◽  
RICHARD A. SHORE ◽  
THEODORE A. SLAMAN

We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].


2021 ◽  
Vol 65 (8) ◽  
pp. 63-69
Author(s):  
M. M. Arslanov ◽  
I. I. Batyrshin ◽  
M. M. Yamaleev
Keyword(s):  

2018 ◽  
Vol 24 (2) ◽  
pp. 165-174
Author(s):  
BJØRN KJOS-HANSSEN

AbstractIs there a nontrivial automorphism of the Turing degrees? It is a major open problem of computability theory. Past results have limited how nontrivial automorphisms could possibly be. Here we consider instead how an automorphism might be induced by a function on reals, or even by a function on integers. We show that a permutation of ω cannot induce any nontrivial automorphism of the Turing degrees of members of 2ω, and in fact any permutation that induces the trivial automorphism must be computable.A main idea of the proof is to consider the members of 2ω to be probabilities, and use statistics: from random outcomes from a distribution we can compute that distribution, but not much more.


2006 ◽  
Vol 141 (1-2) ◽  
pp. 79-88 ◽  
Author(s):  
Angsheng Li ◽  
Guohua Wu ◽  
Yue Yang

Sign in / Sign up

Export Citation Format

Share Document