scholarly journals Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

2017 ◽  
Vol 29 (04) ◽  
pp. 1750014 ◽  
Author(s):  
Michał Wrochna ◽  
Jochen Zahn

We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang–Mills, and Rarita–Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang–Mills case is concluded from known results in the subsidiary condition (or Gupta–Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang–Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

2006 ◽  
Vol 15 (06) ◽  
pp. 925-935 ◽  
Author(s):  
S. MIGNEMI

We study the structure of the classical phase space of generic models of deformed special relativity, which gives rise to a definition of velocity consistent with the deformed Lorentz symmetry. In this way we can also determine the laws of transformation of space–time coordinates.


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Georg Bergner ◽  
David Schaich

Abstract We investigate the lattice regularization of $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory, by stochastically computing the eigenvalue mode number of the fermion operator. This provides important insight into the non-perturbative renormalization group flow of the lattice theory, through the definition of a scale-dependent effective mass anomalous dimension. While this anomalous dimension is expected to vanish in the conformal continuum theory, the finite lattice volume and lattice spacing generically lead to non-zero values, which we use to study the approach to the continuum limit. Our numerical results, comparing multiple lattice volumes, ’t Hooft couplings, and numbers of colors, confirm convergence towards the expected continuum result, while quantifying the increasing significance of lattice artifacts at larger couplings.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2001 ◽  
Vol 64 (5) ◽  
Author(s):  
Yosef Ashkenazy ◽  
Luca Bonci ◽  
Jacob Levitan ◽  
Roberto Roncaglia

1999 ◽  
Vol 9 (5) ◽  
pp. 545-567 ◽  
Author(s):  
LAWRENCE C. PAULSON

A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard Zermelo–Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel's, but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered, as well as final coalgebras defined with respect to parameters. The disjoint sum construction is replaced by a smoother treatment of urelements that simplifies many of the derivations.The theory facilitates machine implementation of recursive definitions by letting both inductive and coinductive definitions be represented as fixed points. It has already been applied to the theorem prover Isabelle (Paulson, 1994).


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


Sign in / Sign up

Export Citation Format

Share Document